题目
思路来源
hhoppitree代码 + 官方题解
题解
注意到最大值一定会被取到,
对于最小值固定的话,对于1 2 3 4 5的连续段,要么贪心地取1 3 5,要么取2 4
如果最大值被包含在1 3 5里显然取1 3 5,否则换成2 4一定能取到最大值,是不劣的,
所以并查集维护每段奇数位置都取/偶数位置都取能否取到最大值
从大到小枚举最小值,把数逐渐加入并查集,实际相当于维护若干段链表
如果存在一个连续段,使得选这个连续段中较多的那一半(奇数唯一,偶数均可)能取到最大值
则答案不需要减1,否则为了取到最大值需要反选,将答案减1
代码1(并查集)
#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
typedef long long ll;
typedef double db;
typedef pair<int,int> P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<<x<<" ";
#define dbg2(x) cerr<<(#x)<<":"<<x<<endl;
#define SZ(a) (int)(a.size())
#define sci(a) scanf("%d",&(a))
#define pt(a) printf("%d",a);
#define pte(a) printf("%d\n",a)
#define ptlle(a) printf("%lld\n",a)
#define debug(...) fprintf(stderr, __VA_ARGS__)
const int N=2e5+10;
int t,n,a[N],par[N],sz[N],x[N],c,mx,can,cnt,ans;
vector<int>pos[N];
bool ok[2][N];
int find(int x){
return par[x]==x?x:par[x]=find(par[x]);
}
bool has(int x){
if(sz[x]&1)return ok[0][x];
return ok[0][x] || ok[1][x];
}
void init(int x){
par[x]=x;
sz[x]=1;
if(a[x]==mx)ok[0][x]=1;
can+=has(x);
cnt++;
}
void op(int x,int v){
can+=v*has(x);
cnt+=v*(sz[x]+1)/2;
}
void merge(int x,int y){//x<y
if(!par[x] || !par[y])return;
x=find(x),y=find(y);
if(x==y)return;
//printf("x:%d y:%d\n",x,y);
op(x,-1),op(y,-1);
int z=sz[x]&1;
ok[0][x]|=ok[z][y];
ok[1][x]|=ok[z^1][y];
sz[x]+=sz[y];
op(x,1);
par[y]=x;
}
int main(){
sci(t);
while(t--){
sci(n);
ans=mx=c=cnt=can=0;
rep(i,1,n){
sci(a[i]);
x[c++]=a[i];
par[i]=0;
sz[i]=0;
ok[0][i]=ok[1][i]=0;
mx=max(mx,a[i]);
pos[i].clear();
}
sort(x,x+c);
c=unique(x,x+c)-x;
rep(i,1,n){
int v=lower_bound(x,x+c,a[i])-x+1;
pos[v].pb(i);
}
per(i,c,1){
if(!SZ(pos[i]))continue;
for(auto &v:pos[i]){
init(v);
if(v)merge(v-1,v);
if(v+1<=n)merge(v,v+1);
}
//printf("i:%d x:%d mx:%d can:%d cnt:%d\n",i,x[i-1],mx,can,cnt);
ans=max(ans,x[i-1]+mx+cnt-(!can));
}
pte(ans);
}
return 0;
}
代码2(动态dp 线段树维护状态合并)
不用观察到任何性质,像维护动态dp那样,直接暴力合并
f[x][i][j][k]表示线段树的x节点,最大值有没有取到,左端点有没有选,右端点有没有选,
相当于有8个状态,线段树维护状态合并即可
#include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
using namespace std;
const int N = 2e5 + 5;
int a[N], f[1 << 19][2][2][2];
void upd(int k, int l) {
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int K = 0; K < 2; ++K) {
f[k][i][j][K] = -1e9;
}
}
}
f[k][0][0][0] = 0;
if (a[l] < 0) return;
f[k][0][1][1] = 1;
f[k][1][1][1] = a[l] + 1;
}
void pushup(int k) {
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int K = 0; K < 2; ++K) {
f[k][i][j][K] = -1e9;
}
}
}
for (int a = 0; a < 2; ++a) {
for (int b = 0; b < (a ? 1 : 2); ++b) {
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int x = 0; x < (j ? 1 : 2); ++x) {
for (int y = 0; y < 2; ++y) {
f[k][a + b][i][y] = max(f[k][a + b][i][y], f[k << 1][a][i][j] + f[k << 1 | 1][b][x][y]);
}
}
}
}
}
}
}
void build(int k, int l, int r) {
if (l == r) {
upd(k, l);
return;
}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
pushup(k);
}
void update(int k, int l, int r, int x) {
if (l == r) {
upd(k, l);
return;
}
int mid = (l + r) >> 1;
if (x <= mid) update(k << 1, l, mid, x);
else update(k << 1 | 1, mid + 1, r, x);
pushup(k);
}
signed main() {
int T; scanf("%d", &T);
while (T--) {
int n; scanf("%d", &n);
vector< pair<int, int> > vec;
for (int i = 1; i <= n; ++i) scanf("%d", &a[i]), vec.push_back({a[i], i});
build(1, 1, n);
sort(vec.begin(), vec.end());
int res = 0;
for (auto [x, y] : vec) {
res = max(res, x + max({f[1][1][0][0], f[1][1][0][1], f[1][1][1][0], f[1][1][1][1]}));
a[y] = -1e7;
update(1, 1, n, y);
}
printf("%d\n", res);
}
return 0;
}