5.3 克拉默法则、逆矩阵和体积

news2024/11/17 14:18:26

本节是使用代数而不是消元法来求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b A − 1 A^{-1} A1。所有的公式都会除以 det ⁡ A \det A detA A − 1 A^{-1} A1 A − 1 b A^{-1}\boldsymbol b A1b 中的每个元素都是一个行列式除以 A A A 的行列式。

一、克拉默法则

克拉默法则(Cramer’s Rule)用来求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b。一个简洁的的公式得到第一分量 x 1 x_1 x1,将单位矩阵 I I I 的第一列用 x \boldsymbol x x 代替,得到一个行列式为 x 1 x_1 x1 的矩阵。如果用 A A A 乘上这个矩阵,第一列会得到 A x A\boldsymbol x Ax 也就是 b \boldsymbol b b B 1 B_1 B1 的其它列和 A A A 一样: 关键思想 [ A ] [ x 1 0 0 x 2 1 0 x 3 0 1 ] = [ b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 ] = B 1 ( 5.3.1 ) \pmb{关键思想}\kern 10pt\begin{bmatrix}&\\&A&\\&\end{bmatrix}\begin{bmatrix}\pmb{x_1}&0&0\\\pmb{x_2}&1&0\\\pmb{x_3}&0&1\end{bmatrix}=\begin{bmatrix}\pmb{b_1}&a_{12}&a_{13}\\\pmb{b_2}&a_{22}&a_{23}\\\pmb{b_3}&a_{32}&a_{33}\end{bmatrix}=B_1\kern 10pt(5.3.1) 关键思想 A x1x2x3010001 = b1b2b3a12a22a32a13a23a33 =B1(5.3.1)一次乘一列。上式对三个矩阵去行列式可以求得 x 1 x_1 x1 乘积规则 ( det ⁡ A ) ( x 1 ) = det ⁡ B 1 或 x 1 = det ⁡ B 1 det ⁡ A ( 5.3.2 ) \boxed{\pmb{乘积规则}\kern 25pt(\det A)(x_1)=\det B_1\kern 10pt或\kern 10pt\pmb{x_1=\frac{\det B_1}{\det A}}}\kern 15pt(5.3.2) 乘积规则(detA)(x1)=detB1x1=detAdetB1(5.3.2)这是用克拉默法则求得的 x \boldsymbol x x 的第一分量,改变 A A A 的一列得到 B 1 B_1 B1。要求 x 2 x_2 x2 B 2 B_2 B2,将向量 x \boldsymbol x x b \boldsymbol b b 放到 I I I A A A 的第二列: 同样的思想 [ a 1 a 2 a 3 ] [ 1 x 1 0 0 x 2 0 0 x 3 1 ] = [ a 1 b a 3 ] = B 2 ( 5.3.3 ) \pmb{同样的思想}\kern 20pt\begin{bmatrix}\\\pmb{a_1}&\pmb{a_2}&\pmb{a_3}\\&\end{bmatrix}\begin{bmatrix}1&x_1&0\\0&x_2&0\\0&x_3&1\end{bmatrix}=\begin{bmatrix}\\\pmb{a_1}&\boldsymbol b&\boldsymbol a_3\\&\end{bmatrix}=B_2\kern 15pt(5.3.3) 同样的思想 a1a2a3 100x1x2x3001 = a1ba3 =B2(5.3.3)取行列式得 ( det ⁡ A ) ( x 2 ) = det ⁡ B 2 (\det A)(x_2)=\det B_2 (detA)(x2)=detB2,即可得到 x 2 = det ⁡ B 2 det ⁡ A \pmb{x_2=\displaystyle\frac{\det B_2}{\det A}} x2=detAdetB2.

例1】求解 3 x 1 + 4 x 2 = 2 3x_1+4x_2=\pmb2 3x1+4x2=2 5 x 1 + 6 x 2 = 4 5x_1+6x_2=\pmb4 5x1+6x2=4 需要三个行列式: det ⁡ A = ∣ 3 4 5 6 ∣ , det ⁡ B 1 = ∣ 2 4 4 6 ∣ , det ⁡ B 2 = ∣ 3 2 5 4 ∣ \pmb{\det A}=\begin{vmatrix}3&4\\5&6\end{vmatrix},\kern 12pt\pmb{\det B_1}=\begin{vmatrix}\pmb2&4\\\pmb4&6\end{vmatrix},\kern 12pt\pmb{\det B_2}=\begin{vmatrix}3&\pmb2\\5&\pmb4\end{vmatrix} detA= 3546 ,detB1= 2446 ,detB2= 3524 A 1 , B 1 , B 2 A_1,B_1,B_2 A1,B1,B2 的行列式分别是 − 2 , − 4 -2,-4 2,4 2 2 2,所有的比值都是除以 det ⁡ A = − 2 \det A=-2 detA=2 求解 x = A − 1 b : x 1 = − 4 − 2 = 2 , x 2 = 2 − 2 = − 1 , 检验 [ 3 4 5 6 ] [ 2 − 1 ] = [ 2 4 ] 求解\kern 3pt\boldsymbol x=A^{-1}\boldsymbol b:\kern 13ptx_1=\frac{-4}{-2}=2,\kern 10ptx_2=\frac{2}{-2}=-1,\kern 11pt\pmb{检验}\kern 4pt\begin{bmatrix}3&4\\5&6\end{bmatrix}\begin{bmatrix}\kern 7pt2\\-1\end{bmatrix}=\begin{bmatrix}2\\4\end{bmatrix} 求解x=A1bx1=24=2,x2=22=1,检验[3546][21]=[24]

克拉默法则(CRAMER’s RULE) \kern 5pt 如果 det ⁡ A \det A detA 不为零, A x = b A\boldsymbol x=\boldsymbol b Ax=b 可以由行列式求出: x 1 = det ⁡ B 1 det ⁡ A x 2 = det ⁡ B 2 det ⁡ A ⋯ x n = det ⁡ B n det ⁡ A ( 5.3.4 ) {\color{blue}x_1=\frac{\det B_1}{\det A}\kern 15ptx_2=\frac{\det B_2}{\det A}\kern 15pt\cdots\kern 15ptx_n=\frac{\det B_n}{\det A}}\kern 20pt(5.3.4) x1=detAdetB1x2=detAdetB2xn=detAdetBn(5.3.4)矩阵 B j B_j Bj 是把 A A A 的第 j j j 列用向量 b \boldsymbol b b 替换。

要求洁 n × n n\times n n×n 的系统,克拉默法则要计算 n + 1 n+1 n+1 个行列式( A A A n n n 个不同的 B B B),每个行列式都是 n ! n! n! 个项的和 —— 使用所有排列的 “大公式”,这些总共会有 ( n + 1 ) ! (n+1)! (n+1)! 项。使用这种方法来求解那无疑是疯狂的,但是我们最终有了一个明确的求解 x \boldsymbol x x 的公式。

二、逆矩阵

例2】克拉默法则对于数字来说没什么效率,但是确很适合字母。对于 n = 2 n=2 n=2 的情况,通过求解 A A − 1 = I AA^{-1}=I AA1=I 得到 A − 1 = [ x y ] A^{-1}=\begin{bmatrix}\boldsymbol x&\boldsymbol y\end{bmatrix} A1=[xy] 的列: A − 1   的列是   x   和   y [ a b c d ] [ x 1 x 2 ] = [ 1 0 ] [ a b c d ] [ y 1 y 2 ] = [ 0 1 ] \pmb{A^{-1}\,的列是\,\boldsymbol x\,和\,\boldsymbol y}\kern 15pt\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}\pmb1\\\pmb0\end{bmatrix}\kern 15pt\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}y_1\\y_2\end{bmatrix}=\begin{bmatrix}\pmb0\\\pmb1\end{bmatrix} A1的列是xy[acbd][x1x2]=[10][acbd][y1y2]=[01]它们有相同的矩阵 A A A,我们需要 ∣ A ∣ |A| A 和关于 x 1 , x 2 , y 1 , y 2 x_1,x_2,y_1,y_2 x1,x2,y1,y2 的四个行列式: ∣ a b c d ∣ 和 ∣ 1 b 0 d ∣ , ∣ a 1 c 0 ∣ , ∣ 0 b 1 d ∣ , ∣ a 0 c 1 ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}和\begin{vmatrix}\pmb1&b\\\pmb0&d\end{vmatrix},\kern 8pt\begin{vmatrix}a&\pmb1\\c&\pmb0\end{vmatrix},\kern 8pt\begin{vmatrix}\pmb0&b\\\pmb1&d\end{vmatrix},\kern 8pt\begin{vmatrix}a&\pmb0\\c&\pmb1\end{vmatrix} acbd 10bd , ac10 , 01bd , ac01 后四个行列式分别是 d , − c , − b , a d,-c,-b,a d,c,b,a(它们都是代数余子式!)下面是 A − 1 A^{-1} A1 x 1 = d ∣ A ∣ , x 2 = − c ∣ A ∣ , y 1 = − b ∣ A ∣ , y 2 = a ∣ A ∣ ,则   A − 1 = 1 a d − b c [ d − b − c a ] x_1=\frac{d}{|A|},\kern 7ptx_2=\frac{-c}{|A|},\kern 7pty_1=\frac{-b}{|A|},\kern 7pty_2=\frac{a}{|A|},则\,A^{-1}=\frac{1}{ad-bc}\begin{bmatrix}\kern 7ptd&-b\\-c&\kern 7pta\end{bmatrix} x1=Ad,x2=Ac,y1=Ab,y2=Aa,则A1=adbc1[dcba]这里选择 2 × 2 2\times2 2×2 的矩阵,重点会很清晰。新的概念是: A − 1 A^{-1} A1 和代数余子式有关。当右侧是单位矩阵 I I I 的一列,就如同 A A − 1 = I AA^{-1}=I AA1=I克拉默法则中的每个 B j B_j Bj 的行列式都是 A A A 的一个代数余子式
对于 n = 3 n=3 n=3 的情况也可以看到这些代数余子式,求解 A x = ( 1 , 0 , 0 ) A\boldsymbol x=(1,0,0) Ax=(1,0,0) 来得到 A − 1 A^{-1} A1 的第 1 1 1 列: B ′ s   的行列式 = A 的代数余子式 ∣ 1 a 12 a 13 0 a 22 a 23 0 a 32 a 33 ∣ ∣ a 11 1 a 13 a 21 0 a 23 a 31 0 a 33 ∣ ∣ a 11 a 12 1 a 21 a 22 0 a 31 a 32 0 ∣ ( 5.3.5 ) \begin{array}{l}\pmb{B's\,的行列式}\\\pmb{=A的代数余子式}\end{array}\kern 6pt\begin{vmatrix}\pmb1&a_{12}&a_{13}\\\pmb0&a_{22}&a_{23}\\\pmb0&a_{32}&a_{33}\end{vmatrix}\kern 6pt\begin{vmatrix}a_{11}&\pmb1&a_{13}\\a_{21}&\pmb0&a_{23}\\a_{31}&\pmb0&a_{33}\end{vmatrix}\kern 6pt\begin{vmatrix}a_{11}&a_{12}&\pmb1\\a_{21}&a_{22}&\pmb0\\a_{31}&a_{32}&\pmb0\end{vmatrix}\kern 15pt(5.3.5) Bs的行列式=A的代数余子式 100a12a22a32a13a23a33 a11a21a31100a13a23a33 a11a21a31a12a22a32100 (5.3.5)第一个行列式 ∣ B 1 ∣ |B_1| B1 是代数余子式 C 11 = a 22 a 33 − a 23 a 32 C_{11}=a_{22}a_{33}-a_{23}a_{32} C11=a22a33a23a32,第二个行列式 ∣ B 2 ∣ |B_2| B2 是代数余子式 C 12 C_{12} C12,注意前面有一个负号 − ( a 21 a 33 − a 23 a 31 ) -(a_{21}a_{33}-a_{23}a_{31}) (a21a33a23a31),这个代数余子式 C 12 C_{12} C12 A − 1 A^{-1} A1 的第一列,当我们除以 det ⁡ A \det A detA,就可以得到逆矩阵!

A − 1 A^{-1} A1 的第 i , j i,j i,j 元素是代数余子式 C j i C_{ji} Cji(不是 C i j C_{ij} Cij)除以 det ⁡ A \det A detA A − 1   的公式 ( A − 1 ) i j = C j i det ⁡ A   和   A − 1 = C T det ⁡ A ( 5.3.6 ) \pmb{A^{-1}\,的公式}\kern 15pt{\color{blue}(A^{-1})_{ij}=\frac{C_{ji}}{\det A}}\,和\,{\color{blue}A^{-1}=\frac{C^T}{\det A}}\kern 18pt(5.3.6) A1的公式(A1)ij=detACjiA1=detACT(5.3.6)

代数余子式 C i j C_{ij} Cij 进到 “代数余子式矩阵”(cofactor matrix) C C C C C C 的转置得到 A − 1 A^{-1} A1 C T C^{T} CT 称为伴随矩阵。要计算 A − 1 A^{-1} A1 的第 i , j i,j i,j 元素,去掉 A A A 的第 j j j 行和第 i i i 列的行列式,然后 ( − 1 ) i + j (-1)^{i+j} (1)i+j 乘上这个行列式得到代数余子式 C j i C_{ji} Cji,最后再除以 det ⁡ A \det A detA
A − 1 A^{-1} A1 的第 3 , 1 3,1 3,1 个元素来检验一下这个规则。对于列 1 1 1 我们要求解 A x = ( 1 , 0 , 0 ) A\boldsymbol x=(1,0,0) Ax=(1,0,0),第三个分量 x 3 x_3 x3 是式(5.3.5)的第三个行列式除以 det ⁡ A \det A detA,这个行列式就是代数余子式 C 13 = a 21 a 32 − a 22 a 31 C_{13}=a_{21}a_{32}-a_{22}a_{31} C13=a21a32a22a31。所以 ( A − 1 ) 31 = C 13 / det ⁡ A (A^{-1})_{31}=C_{13}/\det A (A1)31=C13/detA
总结: 求解 A A − 1 = I AA^{-1}=I AA1=I 时, I I I 的每一列得到 A − 1 A^{-1} A1 的每一列。 A − 1 A^{-1} A1 的每个元素都是一个比值:大小为 n − 1 n-1 n1 的行列式 / 大小为 n n n 的行列式。
直接证明公式 A − 1 = C T / det ⁡ A \pmb{A^{-1}=C^{T}/\det A} A1=CT/detA :即 A C T = ( det ⁡ A ) I \pmb{AC^T=(\det A)I} ACT=(detA)I

[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ C 11 C 21 C 31 C 12 C 22 C 32 C 13 C 23 C 33 ] = [ det ⁡ A 0 0 0 det ⁡ A 0 0 0 det ⁡ A ] ( 5.3.7 ) \begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}\begin{bmatrix}C_{11}&C_{21}&C_{31}\\C_{12}&C_{22}&C_{32}\\C_{13}&C_{23}&C_{33}\end{bmatrix}=\begin{bmatrix}{\color{blue}\det A}&0&0\\0&{\color{blue}\det A}&0\\0&0&{\color{blue}{\det A}}\end{bmatrix}\kern 13pt(5.3.7) a11a21a31a12a22a32a13a23a33 C11C12C13C21C22C23C31C32C33 = detA000detA000detA (5.3.7)

( A   的第   1   行 ) (A\,的第\,1\,行) (A的第1) ( C T   的第   1   列 ) (C^T\,的第\,1\,列) (CT的第1) 得到右侧的第一个 det ⁡ A \det A detA a 11 C 11 + a 12 C 12 + a 13 C 13 = det ⁡ A 这个就是代数余子式公式! a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}=\det A\kern 10pt这个就是代数余子式公式! a11C11+a12C12+a13C13=detA这个就是代数余子式公式!同理, A A A 的第 2 2 2 行乘 C T C^T CT(注意转置) 的第 2 2 2 列也得到 det ⁡ A \det A detA,元素 a 2 j a_{2j} a2j 应乘上代数余子式 C 2 j C_{2j} C2j 以得到行列式。
下面解释式(5.3.7)中的非对角线元素为什么是零? A A A 的行乘上不同行的代数余子式,为什么是零呢? A   的第   2   行 C   的第   1   行 a 21 C 11 + a 22 C 12 + a 23 C 13 = 0 ( 5.3.8 ) \begin{matrix}\pmb{A\,的第\,2\,行}\\\pmb{C\,的第\,1\,行}\end{matrix}\kern 15pta_{21}C_{11}+a_{22}C_{12}+a_{23}C_{13}=0\kern 20pt(5.3.8) A的第2C的第1a21C11+a22C12+a23C13=0(5.3.8)原因:这是一个新矩阵的代数余子式公式,将 A A A 的第二行复制到它的第一行,则新矩阵 A ∗ A^* A 就有两个相等的行,所以式(5.3.8)中的 det ⁡ A ∗ = 0 \det A^*=0 detA=0,注意 A ∗ A^* A A A A 有相同的代数余子式 C 11 , C 12 , C 13 C_{11},C_{12},C_{13} C11,C12,C13,因为除了第一行其它行都是一样的。所以式(5.3.7)是正确的: A C T = ( det ⁡ A ) I 或 A − 1 = C T det ⁡ A AC^T=(\det A)I\kern 15pt或\kern 15ptA^{-1}=\frac{C^T}{\det A} ACT=(detA)IA1=detACT例3】“求和矩阵” A A A 的行列式为 1 1 1,则 A − 1 A^{-1} A1 只包含代数余子式: A = [ 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 ] 的逆矩阵是 A − 1 = C T 1 = [ 1 0 0 0 − 1 1 0 0 0 − 1 1 0 0 0 − 1 1 ] A=\begin{bmatrix}1&0&0&0\\1&1&0&0\\1&1&1&0\\1&1&1&1\end{bmatrix}的逆矩阵是\kern 5ptA^{-1}=\frac{C^T}{1}=\begin{bmatrix}\kern 7pt1&\kern 7pt0&\kern 7pt0&0\\-1&\kern 7pt1&\kern 7pt0&0\\\kern 7pt0&-1&\kern 7pt1&0\\\kern 7pt0&\kern 7pt0&-1&1\end{bmatrix} A= 1111011100110001 的逆矩阵是A1=1CT= 1100011000110001 去掉 A A A 的第 1 1 1 行和第 1 1 1 列可得 3 × 3 3\times3 3×3 的代数余子式 C 11 = 1 C_{11}=1 C11=1,然后去掉 A A A 的第 1 1 1 行和第 2 2 2 列得到 C 12 C_{12} C12,这个 3 × 3 3\times3 3×3 的子矩阵仍然是三角形的,行列式为 1 1 1,但是由于符号是 ( − 1 ) 1 + 2 (-1)^{1+2} (1)1+2,所以代数余子式 C 12 C_{12} C12 − 1 -1 1,这个 − 1 -1 1 A − 1 A^{-1} A1 的元素 ( 2 , 1 ) (2,1) (2,1),不要忘了 C C C 需要转置。
三角矩阵的逆矩阵也是三角矩阵。代数余子式可以给出解释。

例4】如果所有的代数余子式都不是零,那么 A A A 一定是可逆的吗?
\kern 5pt 答: 不可能 !

三、三角形的面积

我们都知道矩形的面积是底乘高,三角形的面积是底乘高的一半。但是下面这个问题无法用这些公式来回答。如果我们已知三角形的三个角 ( x 1 , y 1 ) , ( x 2 , y 2 ) \pmb{(x_1,y_1),(x_2,y_2)} (x1,y1),(x2,y2) ( x 3 , y 3 ) \pmb{(x_3,y_3)} (x3,y3),它的面积是多少?用这些角求出底和高并不算是一个好方法。
这个问题行列式是求面积最好的方法。三角形的面积是一个 3 × 3 \pmb{3\times3} 3×3 的行列式的一半。这里并不会出现底和高中的那些平方根。如果一个角是原点,即 ( x 3 , y 3 ) = ( 0 , 0 ) (x_3,y_3)=(0,0) (x3,y3)=(0,0),则行列式只是一个 2 × 2 2\times2 2×2 的。
在这里插入图片描述

三角形的三个角在 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2) ( x 3 , y 3 ) (x_3,y_3) (x3,y3),则它的 面积 = 行列式/2 三角形的面积 1 2 ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ 当   ( x 3 , y 3 ) = ( 0 , 0 )   时,面积 = 1 2 ∣ x 1 y 1 x 2 y 2 ∣ \pmb{三角形的面积}\kern 10pt\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}\kern 15pt当\,(x_3,y_3)=(0,0)\,时,面积=\frac{1}{2}\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix} 三角形的面积21 x1x2x3y1y2y3111 (x3,y3)=(0,0)时,面积=21 x1x2y1y2

若在 3 × 3 3\times3 3×3 的行列式中令 x 3 = y 3 = 0 x_3=y_3=0 x3=y3=0,则通过代数余子式展开就可以得到一个 2 × 2 2\times2 2×2 的行列式,这些公式没有平方根,也很容易记忆。 3 × 3 3\times3 3×3 的行列式利用代数余子式展开可以分成 3 3 3 2 × 2 2\times2 2×2 的行列式,就如 Figure 5.1 中的第三个三角形,分成了三个一个角为 ( 0 , 0 ) (0,0) (0,0) 的特殊三角形: 面积 = 1 2 ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ = 1 2 ( x 1 y 2 − x 2 y 1 ) + 1 2 ( x 2 y 3 − x 3 y 2 ) + 1 2 ( x 3 y 1 − x 1 y 3 ) ( 5.3.9 ) \pmb{面积}=\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}=\frac{1}{2}(x_1y_2-x_2y_1)+\frac{1}{2}(x_2y_3-x_3y_2)+\frac{1}{2}(x_3y_1-x_1y_3)\kern 15pt(5.3.9) 面积=21 x1x2x3y1y2y3111 =21(x1y2x2y1)+21(x2y3x3y2)+21(x3y1x1y3)(5.3.9)如果 ( 0 , 0 ) (0,0) (0,0) 在三角形的外面,则其中两个三角形的面积可能是负的,但是和是对的。真正的问题是解释一个角是 ( 0 , 0 ) (0,0) (0,0) 的三角形的面积。
为什么 1 2 ∣ x 1 y 2 − x 2 y 1 ∣ \displaystyle\frac{1}{2}|x_1y_2-x_2y_1| 21x1y2x2y1 是三角形的面积呢?我们将因数 1 2 \displaystyle\frac{1}{2} 21 移去,将剩下的当成一个平行四边形(面积变为原来的两倍,因为平行四边形包含两个相等的三角形)。现在证明平行四边形的面积是行列式 x 1 y 2 − x 2 y 1 x_1y_2-x_2y_1 x1y2x2y1,Figure 5.2 中的面积是 11 11 11,因此三角形的面积是 11 2 \displaystyle\frac{11}{2} 211

在这里插入图片描述
证明从   ( 0 , 0 )   开始的平行四边形的面积 = 2 × 2   的行列式 \pmb{证明从\,(0,0)\,开始的平行四边形的面积=2\times2\,的行列式} 证明从(0,0)开始的平行四边形的面积=2×2的行列式证明的方法有很多种,这里选择从行列式的性质来证明。我们要证明面积和行列式有同样的性质 1 − 2 − 3 1-2-3 123,则 面积 = 行列式 !满足这三个性质就可以定义行列式,然后推出其它的所有性质。

  1. A = I A=I A=I,平行四边形将变成一个单位的正方形,它的面积是 det ⁡ I = 1 \det I=1 detI=1
  2. 若进行行交换,行列式的符号会反转。绝对值(正的面积)保持不变,这是因为它是相同的平行四边形。
  3. 如果行 1 1 1 乘上 t t t,Figure 5.3a 表示面积也会乘上 t t t。假设一个新行 ( x 1 ′ , y 1 ′ ) (x'_1,y'_1) (x1,y1) 加到 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)(第 2 2 2 行固定),Figure 5.3b 表明实线平行四边形的面积加起来等于虚线平行四边形的面积(因为两个虚线三角形的面积相等),注意这个图都是在同一平面上,而不是立体的!

在这里插入图片描述
这是一个奇异的证明,我们使用了平面几何的知识。但是这个证明的主要吸引力是它也适用于 n n n 维的情形。从原点出发的 n n n 个边得到一个 n × n n\times n n×n 矩阵的行,这个盒子会有更多的边来完成,就行平行四边形一样。
Figure 5.4 画出了一个三维的盒子,它的边都不是直角。它的体积等于 det ⁡ A \pmb{\det A} detA 的绝对值。我们证明需要再次验证这个体积满足行列式的性质 1 − 3 1-3 13。当一条边被因数 t t t 拉伸,它的体积会乘上 t t t。若边 1 1 1 加到边 1 ′ 1' 1 上,体积将会是两个原始体积之和。这是将 Figure 5.3b 提升至三维甚至是 n n n 维的情况,再高的维度我们就无法画出了。

在这里插入图片描述
单位立方体的体积 = 1 1 1,就是 det ⁡ I \det I detI。行交换即是边的交换得到相同的盒子,它们体积的绝对值是相等的。行列式改变符号,表明是右手系( det ⁡ A > 0 \det A>0 detA>0)或是左手系( det ⁡ A < 0 \det A<0 detA<0)。盒子的体积满足行列式的性质,所以体积 = det ⁡ A \det A detA 的绝对值。

例5】假设一个矩形盒子( 90 ° 90° 90° 角)的边长是 r , s , t r,s,t r,s,t,则它的体积是 r r r s s s t t t。对角矩阵 A A A 的元素 r , s , t r,s,t r,s,t 生成这三个边, det ⁡ A \det A detA 也等于体积 r s t rst rst

例6】微积分中,盒子是无限小的!若要对一个圆积分,我们可能要将 x x x y y y 转变成 r r r θ \theta θ,这是极坐标系的转换: x = r cos ⁡ θ , y = r sin ⁡ θ x=r\cos\theta,y=r\sin\theta x=rcosθy=rsinθ。极坐标盒子的面积是行列式 J J J d r   d θ \textrm dr\,\textrm d\theta drdθ 微积分中的面积 J = ∣ ∂ x / ∂ r ∂ x / ∂ θ ∂ y / ∂ r ∂ y / ∂ θ ∣ = ∣ cos ⁡ θ − r sin ⁡ θ sin ⁡ θ r cos ⁡ θ ∣ = r \pmb{微积分中的面积}\kern 15ptJ=\begin{vmatrix}\partial x/\partial r&\partial x/\partial\theta\\\partial y/\partial r&\partial y/\partial\theta\end{vmatrix}=\begin{vmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{vmatrix}=r 微积分中的面积J= x/ry/rx/θy/θ = cosθsinθrsinθrcosθ =r在小面积 d A = r   d r   d θ \textrm dA=r\,\textrm dr\,\textrm d\theta dA=rdrdθ 的行列式是 r r r,拉伸因子 J J J 进到双重积分,就像 d x / d u \textrm dx/\textrm du dx/du 进入到正常积分 ∫ d x = ∫ ( d x / d u ) d u \int\textrm dx=\int(\textrm dx/\textrm du)\textrm du dx=(dx/du)du。在三重积分中, 3 × 3 3\times3 3×3 的雅可比矩阵有 9 9 9 个导数。

四、叉积

叉积(cross product)是行列式的另一个应用,尤其对于三维情况。从向量 u = ( u 1 , u 2 , u 3 ) \boldsymbol u=(u_1,u_2,u_3) u=(u1,u2,u3) v = ( v 1 , v 2 , v 3 ) \boldsymbol v=(v_1,v_2,v_3) v=(v1,v2,v3) 开始,它不像点积是一个数字,叉积是一个向量 —— 也是三维的。写作 u × v \boldsymbol u\times\boldsymbol v u×v,读作 u \boldsymbol u u 叉乘(cross) v \boldsymbol v v。叉积的分量是 2 × 2 2\times2 2×2 的代数余子式,下面会有叉积的一些性质,这些性质使得 u × v \boldsymbol u\times \boldsymbol v u×v 在几何学和物理学中非常有用。
叉积的定义:

定义 u = ( u 1 , u 2 , u 3 ) \kern 5pt\boldsymbol u=(u_1,u_2,u_3) u=(u1,u2,u3) v = ( v 1 , v 2 , v 3 ) \boldsymbol v=(v_1,v_2,v_3) v=(v1,v2,v3)叉积是一个向量 u × v = ∣ i j k u 1 u 2 u 3 v 1 v 2 v 3 ∣ = ( u 2 v 3 − u 3 v 2 ) i + ( u 3 v 1 − u 1 v 3 ) j + ( u 1 v 2 − u 2 v 1 ) k ( 5.3.10 ) {\color{blue}\boldsymbol u\times \boldsymbol v}={\color{blue}\begin{vmatrix}\boldsymbol i&\boldsymbol j&\boldsymbol k\\u_1&u_2&u_3\\v_1&v_2&v_3\end{vmatrix}}=(u_2v_3-u_3v_2)\boldsymbol i+(u_3v_1-u_1v_3)\boldsymbol j+(u_1v_2-u_2v_1)\boldsymbol k\kern 16pt(5.3.10) u×v= iu1v1ju2v2ku3v3 =(u2v3u3v2)i+(u3v1u1v3)j+(u1v2u2v1)k(5.3.10)向量 u × v \boldsymbol u\times\boldsymbol v u×v 垂直于 u \boldsymbol u u v \boldsymbol v v,叉积 v × u = − ( u × v ) \boldsymbol v\times\boldsymbol u=-(\boldsymbol u\times\boldsymbol v) v×u=(u×v)

注解: 3 × 3 3\times3 3×3 的行列式是记住 u × v \boldsymbol u\times\boldsymbol v u×v 最简单的方法,这种并不太合法,因为第一行是向量 i , j , k \boldsymbol i,\boldsymbol j,\boldsymbol k i,j,k,后面两行都是数字。在行列式中,向量 i = ( 1 , 0 , 0 ) \boldsymbol i=(1,0,0) i=(1,0,0) u 2 v 3 u_2v_3 u2v3 − u 3 v 2 -u_3v_2 u3v2,得到的是 ( u 2 v 3 − u 3 v 2 , 0 , 0 ) (u_2v_3-u_3v_2,0,0) (u2v3u3v2,0,0),这就是叉积的第一个分量。
注意下标的循环模式: 2 2 2 3 3 3 得到 u × v \boldsymbol u\times\boldsymbol v u×v 的分量 1 1 1 3 3 3 1 1 1 得到分量 2 2 2 1 1 1 2 2 2 得到分量 3 3 3。这些就完成了 u × v \boldsymbol u\times\boldsymbol v u×v 的定义。下面列出叉积的性质:
性质1: v × u \boldsymbol v\times\boldsymbol u v×u 会较好行列式的第 2 2 2 行和第 3 3 3 行,所以它等于 − ( u × v ) -(\boldsymbol u\times\boldsymbol v) (u×v)
性质2: 叉积 u × v \boldsymbol u\times\boldsymbol v u×v 垂直于 u \boldsymbol u u(也垂直于 v \boldsymbol v v)。直接的证明就是做点积,展开后各项消去后得到零: u ⋅ ( u × v ) = u 1 ( u 2 v 3 − u 3 v 2 ) + u 2 ( u 3 v 1 − u 1 v 3 ) + u 3 ( u 1 v 2 − u 2 v 1 ) = 0 ( 5.3.11 ) \boldsymbol u\cdot(\boldsymbol u\times\boldsymbol v)=u_1(u_2v_3-u_3v_2)+u_2(u_3v_1-u_1v_3)+u_{3}(u_1v_2-u_2v_1)=0\kern 14pt(5.3.11) u(u×v)=u1(u2v3u3v2)+u2(u3v1u1v3)+u3(u1v2u2v1)=0(5.3.11)上式就是 u ⋅ ( u × v ) \boldsymbol u\cdot(\boldsymbol u\times\boldsymbol v) u(u×v) 的代数余子式公式,这个行列式的行分别是 u , u \boldsymbol u,\boldsymbol u u,u v \boldsymbol v v,有两个相等的行,所以结果是零。
性质3: 任何向量与它自己的叉积(两个相等的行) u × u = 0 \boldsymbol u\times\boldsymbol u=\boldsymbol 0 u×u=0.
u \boldsymbol u u v \boldsymbol v v 平行,叉积是零;若 u \boldsymbol u u v \boldsymbol v v 垂直,则点积为零。因为一个含有 sin ⁡ θ \sin\theta sinθ,另一个含有 cos ⁡ θ \cos\theta cosθ

∣ ∣ u × v ∣ ∣ = ∣ ∣ u ∣ ∣   ∣ ∣ v ∣ ∣   ∣ sin ⁡ θ ∣ ∣ u ⋅ v ∣ = ∣ ∣ u ∣ ∣   ∣ ∣ v ∣ ∣   ∣ cos ⁡ θ ∣ ( 5.3.12 ) ||\boldsymbol u\times\boldsymbol v||=||\boldsymbol u||\,||\boldsymbol v||\,|\sin\theta|\kern 25pt|\boldsymbol u\cdot\boldsymbol v|=||\boldsymbol u||\,||\boldsymbol v||\,|\cos\theta|\kern 18pt(5.3.12) ∣∣u×v∣∣=∣∣u∣∣∣∣v∣∣sinθuv=∣∣u∣∣∣∣v∣∣cosθ(5.3.12)

例7 u = ( 3 , 2 , 0 ) \boldsymbol u=(3,2,0) u=(3,2,0) v = ( 1 , 4 , 0 ) \boldsymbol v=(1,4,0) v=(1,4,0) x y xy xy 平面, u × v \boldsymbol u\times\boldsymbol v u×v 沿着 z z z 轴向上: u × v = ∣ i j k 3 2 0 1 4 0 ∣ = 10 k . 叉积是   u × v = ( 0 , 0 , 10 ) . \boldsymbol u\times\boldsymbol v=\begin{vmatrix}\boldsymbol i&\boldsymbol j&\boldsymbol k\\3&2&0\\1&4&0\end{vmatrix}=10\boldsymbol k.\kern 15pt叉积是\,\boldsymbol u\times\boldsymbol v=(0,0,10). u×v= i31j24k00 =10k.叉积是u×v=(0,0,10). u × v \boldsymbol u\times\boldsymbol v u×v 的长度等于以 u \boldsymbol u u v \boldsymbol v v 为边的平行四边形的面积,这个性质很重要,本例中面积是 10 10 10

例8 u = ( 1 , 1 , 1 ) \boldsymbol u=(1,1,1) u=(1,1,1) v = ( 1 , 1 , 2 ) \boldsymbol v=(1,1,2) v=(1,1,2) 的叉积是 ( 1 , − 1 , 0 ) (1,-1,0) (1,1,0) ∣ i j k 1 1 1 1 1 2 ∣ = i ∣ 1 1 1 2 ∣ − j ∣ 1 1 1 2 ∣ + k ∣ 1 1 1 1 ∣ = i − j \begin{vmatrix}\boldsymbol i&\boldsymbol j&\boldsymbol k\\1&1&1\\1&1&2\end{vmatrix}=\boldsymbol i\begin{vmatrix}1&1\\1&2\end{vmatrix}-\boldsymbol j\begin{vmatrix}1&1\\1&2\end{vmatrix}+\boldsymbol k\begin{vmatrix}1&1\\1&1\end{vmatrix}=\boldsymbol i-\boldsymbol j i11j11k12 =i 1112 j 1112 +k 1111 =ij向量 ( 1 , − 1 , 0 ) (1,-1,0) (1,1,0) 垂直于 ( 1 , 1 , 1 ) (1,1,1) (1,1,1) ( 1 , 1 , 2 ) (1,1,2) (1,1,2),面积是 2 \sqrt2 2

例9 i = ( 1 , 0 , 0 ) \boldsymbol i=(1,0,0) i=(1,0,0) j = ( 0 , 1 , 0 ) \boldsymbol j=(0,1,0) j=(0,1,0) 的叉积遵循右手规则,叉积 k = i × j \boldsymbol k=\boldsymbol i\times\boldsymbol j k=i×j 是向上而不向下:

在这里插入图片描述
由右手规则, i × j = k \boldsymbol i\times\boldsymbol j=\boldsymbol k i×j=k,也可以得到 j × k = i \boldsymbol j\times\boldsymbol k=\boldsymbol i j×k=i k × i = j \boldsymbol k\times\boldsymbol i=\boldsymbol j k×i=j,注意这个循环的顺序。若是相反的顺序(反循环)拇指反向且叉积会指向另一边: k × j = − i , i × k = − j \boldsymbol k\times\boldsymbol j=-\boldsymbol i,\boldsymbol i\times\boldsymbol k=-\boldsymbol j k×j=ii×k=j j × i = − k \boldsymbol j\times\boldsymbol i=-\boldsymbol k j×i=k。我们从 3 × 3 3\times3 3×3 的行列式中可以看到 3 3 3 个正号和 3 3 3 个负号。
u × v \boldsymbol u\times\boldsymbol v u×v 的定义可以基于向量,而不是它们的分量:

定义 \kern 5pt 叉积 是长度为   ∣ ∣ u ∣ ∣   ∣ ∣ v ∣ ∣   ∣ sin ⁡ θ ∣ 的向量 \color{blue}\pmb{叉积}是长度为\,||\boldsymbol u||\,||\boldsymbol v||\,|\sin\theta| 的向量 叉积是长度为∣∣u∣∣∣∣v∣∣sinθ的向量。它的方向垂直于 u \boldsymbol u u v \boldsymbol v v,方向 “向上” 或 “向下” 由右手规则决定。

这个定义在物理上很有用, ( u 1 , u 2 , u 3 ) (u_1,u_2,u_3) (u1,u2,u3) 是一个有质量物体的位置, ( F x , F y , F z ) (F_x,F_y,F_z) (Fx,Fy,Fz) 是作用在它上的力,如果 F \boldsymbol F F u \boldsymbol u u 平行,则 u × F = 0 \boldsymbol u\times\boldsymbol F=\boldsymbol 0 u×F=0 —— 表示没有转动。叉积 u × F \boldsymbol u\times\boldsymbol F u×F 是转动力(turning force)或力矩(torque)。它的指向沿着转动轴(垂直于 u \boldsymbol u u F \boldsymbol F F),它的长度 ∣ ∣ u ∣ ∣   ∣ ∣ F ∣ ∣   ∣ sin ⁡ θ ∣ ||\boldsymbol u||\,||\boldsymbol F||\,|\sin\theta| ∣∣u∣∣∣∣F∣∣sinθ 是产生转动的 “矩”(moment)的量测值。

五、三重积 = 行列式 = 体积

由于 u × v \boldsymbol u\times\boldsymbol v u×v 是一个向量,我们将它与第三个向量 w \boldsymbol w w 做点积,就得到三重积(triple product) ( u × v ) ⋅ w (\boldsymbol u\times\boldsymbol v)\cdot\boldsymbol w (u×v)w,这个称为 “数量” 三重积,因为它是一个数字,也称为混合积。实际上它也是一个行列式 —— 是边长为 u , v , w \boldsymbol u,\boldsymbol v,\boldsymbol w u,v,w 的盒子的体积: 三重积 ( u × v ) ⋅ w = ∣ w 1 w 2 w 3 u 1 u 2 u 3 v 1 v 2 v 3 ∣ = ∣ u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 ∣ ( 5.3.13 ) \pmb{三重积}\kern 15pt{\color{blue}(\boldsymbol u\times\boldsymbol v)\cdot\boldsymbol w}=\begin{vmatrix}w_1&w_2&w_3\\u_1&u_2&u_3\\v_1&v_2&v_3\end{vmatrix}=\begin{vmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1&w_2&w_3\end{vmatrix}\kern 18pt(5.3.13) 三重积(u×v)w= w1u1v1w2u2v2w3u3v3 = u1v1w1u2v2w2u3v3w3 (5.3.13)我们可以将 w \boldsymbol w w 放在顶部或者底部,这两个行列式是相等的,因为从一个到另一个行列式需要进行两次行交换。注意当行列式为零时: ( u × v ) ⋅ w = 0 当且仅当向量   u , v , w   在同一平面上 (\boldsymbol u\times\boldsymbol v)\cdot\boldsymbol w=0\kern 10pt当且仅当向量\,\boldsymbol u,\boldsymbol v,\boldsymbol w\,在同一平面上 (u×v)w=0当且仅当向量u,v,w在同一平面上原因一 u × v \boldsymbol u\times\boldsymbol v u×v 垂直于这个平面,所以它与 w \boldsymbol w w 的点积为零。
原因二: 一个平面内的三个向量是相关的,矩阵是奇异的( det ⁡ = 0 \det =0 det=0)。
原因三: u , v , w \boldsymbol u,\boldsymbol v,\boldsymbol w u,v,w 的盒子展成一个平面,它的体积为零。
( u × v ) ⋅ w (\boldsymbol u\times\boldsymbol v)\cdot\boldsymbol w (u×v)w 等于边是 u , v , w \boldsymbol u,\boldsymbol v,\boldsymbol w u,v,w 的盒子的体积这个性质非常重要,这个 3 × 3 3\times3 3×3 的行列式携带了大量的信息。像 a d − b c ad-bc adbc 对于 2 × 2 2\times2 2×2 的矩阵,它可以分成可逆和奇异。

六、主要内容总结

  1. 克拉默法则是用行列式的比值求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b,如 x 1 = ∣ B 1 ∣ ∣ A ∣ = ∣ b a 1 ⋯ a n ∣ ∣ A ∣ x_1=\displaystyle\frac{|B_1|}{|A|}=\frac{\begin{vmatrix}\boldsymbol b&\boldsymbol a_1&\cdots&\boldsymbol a_n\end{vmatrix}}{|A|} x1=AB1=A ba1an
  2. C C C A A A 的代数余子式矩阵, C T C^T CT A A A 的伴随矩阵,则逆矩阵 A − 1 = C T det ⁡ A A^{-1}=\displaystyle\frac{C^T}{\det A} A1=detACT
  3. 当盒子的边是 A A A 的行时,盒子的体积是 ∣ det ⁡ A ∣ |\det A| detA
  4. 在二重和三重积分中,面积和体积需要改变变量。
  5. R 3 \textrm {\pmb R}^3 R3 中,叉积 u × v \boldsymbol u\times\boldsymbol v u×v 垂直于 u \boldsymbol u u v \boldsymbol v v。注意 i × j = k \boldsymbol i\times\boldsymbol j=\boldsymbol k i×j=k

七、例题

例10】如果 A A A 是奇异的,则方程 A C T = ( det ⁡ A ) I AC^T=(\det A)I ACT=(detA)I 将变成 A C T = 零矩阵 \pmb{AC^T=零矩阵} ACT=零矩阵 C T C^T CT 的每一列都在 A A A 的零空间中,这些列包含沿着 A A A 的行的代数余子式。所以代数余子式可以快速的找到秩 2 2 2 3 × 3 3\times3 3×3 的矩阵的零空间。
对于下面秩 2 2 2 的奇异矩阵,通过 x = 沿着一行的代数余子式 \boldsymbol x=沿着一行的代数余子式 x=沿着一行的代数余子式 来求解 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 代数余子式得到零空间 A = [ 1 4 7 2 3 9 2 2 8 ] A = [ 1 1 2 1 1 1 1 1 1 ] \pmb{代数余子式得到零空间}\kern 10ptA=\begin{bmatrix}1&4&7\\2&3&9\\2&2&8\end{bmatrix}\kern 10ptA=\begin{bmatrix}1&1&2\\1&1&1\\1&1&1\end{bmatrix} 代数余子式得到零空间A= 122432798 A= 111111211 解: 第一个矩阵沿着第一行的代数余子式如下(注意每个负号): ∣ 3 9 2 8 ∣ = 6 − ∣ 2 9 2 8 ∣ = 2 ∣ 2 3 2 2 ∣ = − 2 \begin{vmatrix}3&9\\2&8\end{vmatrix}=6\kern 20pt-\begin{vmatrix}2&9\\2&8\end{vmatrix}=2\kern 20pt\begin{vmatrix}2&3\\2&2\end{vmatrix}=-2 3298 =6 2298 =2 2232 =2 x = ( 6 , 2 , − 2 ) \boldsymbol x=(6,2,-2) x=(6,2,2) A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 的解。沿着第二行的代数余子式是 ( − 18 , − 6 , 6 ) (-18,-6,6) (18,6,6),这就是 − 3 x -3\boldsymbol x 3x,它也在 A A A 的一维零空间中。
第二个矩阵沿着第一行的代数余子式都是零,零向量 x = ( 0 , 0 , 0 ) \boldsymbol x=(0,0,0) x=(0,0,0) 没什么意义,沿着第二行的代数余子式得到 x = ( 1 , − 1 , 0 ) \boldsymbol x=(1,-1,0) x=(1,1,0),它是 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 的解。
每个秩为 n − 1 n-1 n1 n × n n\times n n×n 矩阵至少有一个沿着某一行非零的代数余子式,但是对于秩 n − 2 n-2 n2 的矩阵,所有的代数余子式都为零,我们就只能找到 x = 0 \boldsymbol x=\boldsymbol 0 x=0 这一个解。

例9】使用克拉默法则的比值 det ⁡ B j det ⁡ A \displaystyle\frac{\det B_j}{\det A} detAdetBj 来求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b,也求出逆矩阵 A − 1 = C T det ⁡ A A^{-1}=\displaystyle\frac{C^T}{\det A} A1=detACT。对于 b = ( 0 , 0 , 1 ) \boldsymbol b=(0,0,1) b=(0,0,1),解 x \boldsymbol x x A − 1 A^{-1} A1 的第 3 3 3 列! 在计算列 x = ( x , y , z ) \boldsymbol x=(x,y,z) x=(x,y,z) 时,都和那些代数余子式相关? A − 1   的第   3   列 [ 2 6 2 1 4 2 5 9 0 ] [ x y z ] = [ 0 0 1 ] \pmb{A^{-1}\,的第\,3\,列}\kern 15pt\begin{bmatrix}2&6&2\\1&4&2\\5&9&0\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\0\\1\end{bmatrix} A1的第3 215649220 xyz = 001 求两个盒子的体积:边是 A A A 的列和边是 A − 1 A^{-1} A1 的行。
解: B j B_j Bj 的行列式(右侧的 b \boldsymbol b b 代替第 j j j 列)是: ∣ B 1 ∣ = ∣ 0 6 2 0 4 2 1 9 0 ∣ = 4 ∣ B 2 ∣ = ∣ 2 0 2 1 0 2 5 1 0 ∣ = − 2 ∣ B 3 ∣ = ∣ 2 6 0 1 4 0 5 9 1 ∣ = 2 |B_1|=\begin{vmatrix}\pmb0&6&2\\\pmb0&4&2\\\pmb1&9&0\end{vmatrix}=4\kern 20pt|B_2|=\begin{vmatrix}2&\pmb0&2\\1&\pmb0&2\\5&\pmb1&0\end{vmatrix}=-2\kern 20pt|B_3|=\begin{vmatrix}2&6&\pmb0\\1&4&\pmb0\\5&9&\pmb1\end{vmatrix}=2 B1= 001649220 =4B2= 215001220 =2B3= 215649001 =2这些就是第 3 3 3 行的代数余子式 C 31 , C 32 , C 33 C_{31},C_{32},C_{33} C31,C32,C33,它们与第三行的点积是 det ⁡ A = 2 \det A=2 detA=2 det ⁡ A = a 31 C 31 + a 32 C 32 + a 33 C 33 = ( 5 , 9 , 0 ) ⋅ ( 4 , − 2 , 2 ) = 2 \det A=a_{31}C_{31}+a_{32}C_{32}+a_{33}C_{33}=(5,9,0)\cdot(4,-2,2)=2 detA=a31C31+a32C32+a33C33=(5,9,0)(4,2,2)=2这三个比值 det ⁡ B j det ⁡ A \displaystyle\frac{\det B_j}{\det A} detAdetBj 得到解的三个分量 x = ( 2 , − 1 , 1 ) \boldsymbol x=(2,-1,1) x=(2,1,1),这个 x \boldsymbol x x 就是 A − 1 A^{-1} A1 的第三列,因为 b = ( 0 , 0 , 1 ) \boldsymbol b=(0,0,1) b=(0,0,1) I I I 的第三列。
沿着 A A A 其它行的代数余子式,除以 det ⁡ A \det A detA,得到 A − 1 A^{-1} A1 的其它列: A − 1 = C T det ⁡ A = 1 2 [ − 18 18 4 10 − 10 − 2 − 11 12 2 ] . 验证 A A − 1 = I A^{-1}=\frac{C^T}{\det A}=\frac{1}{2}\begin{bmatrix}-18&\kern 7pt18&\kern 7pt4\\\kern 7pt10&-10&-2\\-11&\kern 7pt12&\kern 7pt2\end{bmatrix}.\kern 15pt验证\kern 5ptAA^{-1}=I A1=detACT=21 181011181012422 .验证AA1=I边是 A A A 的列盒子的体积 = det ⁡ A = 2 =\det A=2 =detA=2,边是 A A A 的行的盒子的体积也是 2 2 2,因为 ∣ A T ∣ = ∣ A ∣ |A^{T}|=|A| AT=A。边是 A − 1 A^{-1} A1 行的盒子体积是 1 ∣ A ∣ = 1 2 \displaystyle\frac{1}{|A|}=\frac{1}{2} A1=21

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2175108.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于微信小程序的网上商城+ssm(lw+演示+源码+运行)

摘 要 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;微信小程序被用户普遍使用&#xff0c;为方便用户能够可以…

STM32F407单片机编程入门(二十七)以太网接口详解及实战含源码

文章目录 一.概要二.单片机以太网系统基本结构1.OSI 七层模型2.单片机实现以太网功能组成 三.STM32F407VET6单片机以太网内部结构1.MII接口介绍2.RMII接口介绍 四.LWIP TCP/IP协议栈介绍五.PHY收发器LAN8720介绍1.LAN8720内部框图2.LAN8720应用电路3.LAN8720以太网模块 六.Cube…

在公司网络环境下,无法访问公共网络时,可在插件端配置网络代理后使用通义灵码

在公司网络环境下&#xff0c;无法访问公共网络时&#xff0c;可在插件端配置网络代理后使用通义灵码。 通义灵码插件下载&#xff1a;通义灵码_智能编码助手_AI编程-阿里云 配置网络代理 公司网络通常使用 HTTP 代理服务器在网络流量发送到目标位置之前进行拦截&#xff0c;以…

6--苍穹外卖-SpringBoot项目中菜品管理 详解(二)

目录 菜品分页查询 需求分析和设计 代码开发 设计DTO类 设计VO类 Controller层 Service层接口 Service层实现类 Mapper层 功能测试 删除菜品 需求设计和分析 代码开发 Controller层 Service层接口 Service层实现类 Mapper层 功能测试 修改菜品 需求分析和设…

Spring--boot自动配置原理案例--阿里云--starter

Spring–boot自动配置原理案例–阿里云–starter 定义这个starter的作用是它可以将阿里云的工具类自动放入IOC容器中&#xff0c;供人使用。 我们看一看构建starter的过程&#xff0c;其实就是在atuoconfigure模块中加入工具类&#xff0c;然后写一个配置类在其中将工具类放入…

【ChromeDriver安装】爬虫必备

以下是安装和配置 chromedriver 的步骤&#xff1a; 1. 确认 Chrome 浏览器版本 打开 Chrome 浏览器&#xff0c;点击右上角的菜单按钮&#xff08;三个点&#xff09;&#xff0c;选择“帮助” > “关于 Google Chrome”。 2. 下载 Chromedriver 根据你的 Chrome 版本&…

【研赛A题成品论文】24华为杯数学建模研赛A题成品论文+可运行代码丨免费分享

2024华为杯研究生数学建模竞赛A题精品成品论文已出&#xff01; A题 风电场有功功率优化分配 一、问题分析 A题是一道工程建模与优化类问题&#xff0c;其目的是根据题目所给的附件数据资料分析风机主轴及塔架疲劳损伤程度&#xff0c;以及建立优化模型求解最优有功功率分配…

哪些AI软件能轻松搞定你的文案、总结、论文、计划书?

大家好&#xff01;在我们每天紧张忙碌的生活中&#xff0c;有时候一天结束时&#xff0c;我们还有一堆事情等着处理。 图片 但别担心&#xff0c;今天我要为大家介绍几款AI软件&#xff0c;它们可以在你忙碌的一天结束后&#xff0c;成为你的得力助手&#xff0c;帮你轻松管…

初识Tomcat

Tomcat是一款可以运行javaWebAPP的服务器软件。 一个服务器想要执行java代码&#xff0c;则需要JRE&#xff08;jvm、java运行环境等&#xff09;&#xff0c;但是需要执行javaWEB项目则还需要服务器软件&#xff0c;Tomacat就是其中很流行的一款。因为一个javaWEB项目会有很多…

Accelerate单卡,多卡config文件配置

依赖库 from accelerate import Accelerator from accelerate import DistributedDataParallelKwargs ddp_kwargs DistributedDataParallelKwargs(find_unused_parametersTrue) accelerator Accelerator(kwargs_handlers[ddp_kwargs]) 代码中删除所有的.cuda() 或者to(devic…

Xshell连接服务器

一、Xshell-7.0.0164p、Xftp 7下载 1.1、文件下载 通过网盘分享的文件&#xff1a;xshell 链接: https://pan.baidu.com/s/1qc0CPv4Hkl19hI9tyvYZkQ 提取码: 5snq –来自百度网盘超级会员v2的分享 1.2、ip连接 下shell和xftp操作一样&#xff1a;找到文件—》新建—》名称随…

【英特尔IA-32架构软件开发者开发手册第3卷:系统编程指南】2001年版翻译,1-1

文件下载与邀请翻译者 学习英特尔开发手册&#xff0c;最好手里这个手册文件。原版是PDF文件。点击下方链接了解下载方法。 讲解下载英特尔开发手册的文章 翻译英特尔开发手册&#xff0c;会是一件耗时费力的工作。如果有愿意和我一起来做这件事的&#xff0c;那么&#xff…

论文不同写作风格下的ChatGPT提示词分享

学境思源&#xff0c;一键生成论文初稿&#xff1a; AcademicIdeas - 学境思源AI论文写作 在学术论文写作中&#xff0c;不同的写作风格能显著影响文章的表达效果与读者的理解。无论是描述性、分析性、论证性&#xff0c;还是批判性写作风格&#xff0c;合理选择和运用恰当的写…

生成模型小结

突然发现之前整理的makedown有必要放在博客里面,这样不同的设备之间可以直接观看达到复习的效果. GAN G和D不断的博弈提高自己。GAN的优点是保真度比较高&#xff0c;缺点是多样性比较低。 (auto-encoder)AE&#xff0c;DAE、VAE、VQVAE 输入x&#xff0c;经过编码器生成&…

Elasticsearch学习笔记(2)

索引库操作 在Elasticsearch中&#xff0c;Mapping是定义文档字段及其属性的重要机制。 Mapping映射属性 type&#xff1a;字段数据类型 1、字符串&#xff1a; text&#xff1a;可分词的文本&#xff0c;适用于需要全文检索的情况。keyword&#xff1a;用于存储精确值&am…

二阶低通滤波器(Simulink仿真)

1、如何将S域传递函数转为Z域传递函数 传递函数如何转化为差分方程_非差分方程转成差分方程-CSDN博客文章浏览阅读4.1k次,点赞4次,收藏50次。本文介绍了如何将传递函数转化为差分方程,主要适用于PLC和嵌入式系统。通过MATLAB的系统辨识工具箱获取传递函数,并探讨了离散化方…

OpenCV第十二章——人脸识别

1.人脸跟踪 1.1 级联分类器 OpenCV中的级联分类器是一种基于AdaBoost算法的多级分类器&#xff0c;主要用于在图像中检测目标对象。以下是对其简单而全面的解释&#xff1a; 一、基本概念 级联分类器&#xff1a;是一种由多个简单分类器&#xff08;弱分类器&#xff09;级联组…

Yolov10环境配置

参考文章&#xff1a;1.YOLOv10超详细环境搭建以及模型训练&#xff08;GPU版本&#xff09;-CSDN博客 2.Windows下安装pytorch教程(下载.whl的方式)_pytorch whl-CSDN博客 安装步骤和文件夹顺序一样 1.安装CUDA和cuDNN 1.1安装CUDA 1.1.1查看当前你的电脑显卡支持的最高CUD…

Docker从入门到精通_02 Docker魔法之旅:零基础Linux用户也能轻松驾驭的安装部署指南

文章目录 Docker从入门到精通_02 Docker魔法之旅&#xff1a;零基础Linux用户也能轻松驾驭的安装部署指南一 操作系统安装二 操作系统环境准备2.1 关闭防火墙2.1.2.2 关闭selinux2.2.1 临时关闭selinux2.2.2 永久关闭selinux 三 docker引擎安装3.1 从get.docker.com 下载 get-d…

02-ZYNQ linux开发环境安装,基于Petalinux2022.2和Vitis2022.2

petalinux安装 Petalinux 工具是 Xilinx 公司推出的嵌入式 Linux 开发套件&#xff0c;包括了 u-boot、Linux Kernel、device-tree、rootfs 等源码和库&#xff0c;以及 Yocto recipes&#xff0c;可以让客户很方便的生成、配置、编译及自定义 Linux 系统。Petalinux 支持 Ver…