本节是使用代数而不是消元法来求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b 和 A − 1 A^{-1} A−1。所有的公式都会除以 det A \det A detA, A − 1 A^{-1} A−1 和 A − 1 b A^{-1}\boldsymbol b A−1b 中的每个元素都是一个行列式除以 A A A 的行列式。
一、克拉默法则
克拉默法则(Cramer’s Rule)用来求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b。一个简洁的的公式得到第一分量 x 1 x_1 x1,将单位矩阵 I I I 的第一列用 x \boldsymbol x x 代替,得到一个行列式为 x 1 x_1 x1 的矩阵。如果用 A A A 乘上这个矩阵,第一列会得到 A x A\boldsymbol x Ax 也就是 b \boldsymbol b b。 B 1 B_1 B1 的其它列和 A A A 一样: 关键思想 [ A ] [ x 1 0 0 x 2 1 0 x 3 0 1 ] = [ b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 ] = B 1 ( 5.3.1 ) \pmb{关键思想}\kern 10pt\begin{bmatrix}&\\&A&\\&\end{bmatrix}\begin{bmatrix}\pmb{x_1}&0&0\\\pmb{x_2}&1&0\\\pmb{x_3}&0&1\end{bmatrix}=\begin{bmatrix}\pmb{b_1}&a_{12}&a_{13}\\\pmb{b_2}&a_{22}&a_{23}\\\pmb{b_3}&a_{32}&a_{33}\end{bmatrix}=B_1\kern 10pt(5.3.1) 关键思想 A x1x2x3010001 = b1b2b3a12a22a32a13a23a33 =B1(5.3.1)一次乘一列。上式对三个矩阵去行列式可以求得 x 1 x_1 x1: 乘积规则 ( det A ) ( x 1 ) = det B 1 或 x 1 = det B 1 det A ( 5.3.2 ) \boxed{\pmb{乘积规则}\kern 25pt(\det A)(x_1)=\det B_1\kern 10pt或\kern 10pt\pmb{x_1=\frac{\det B_1}{\det A}}}\kern 15pt(5.3.2) 乘积规则(detA)(x1)=detB1或x1=detAdetB1(5.3.2)这是用克拉默法则求得的 x \boldsymbol x x 的第一分量,改变 A A A 的一列得到 B 1 B_1 B1。要求 x 2 x_2 x2 和 B 2 B_2 B2,将向量 x \boldsymbol x x 和 b \boldsymbol b b 放到 I I I 和 A A A 的第二列: 同样的思想 [ a 1 a 2 a 3 ] [ 1 x 1 0 0 x 2 0 0 x 3 1 ] = [ a 1 b a 3 ] = B 2 ( 5.3.3 ) \pmb{同样的思想}\kern 20pt\begin{bmatrix}\\\pmb{a_1}&\pmb{a_2}&\pmb{a_3}\\&\end{bmatrix}\begin{bmatrix}1&x_1&0\\0&x_2&0\\0&x_3&1\end{bmatrix}=\begin{bmatrix}\\\pmb{a_1}&\boldsymbol b&\boldsymbol a_3\\&\end{bmatrix}=B_2\kern 15pt(5.3.3) 同样的思想 a1a2a3 100x1x2x3001 = a1ba3 =B2(5.3.3)取行列式得 ( det A ) ( x 2 ) = det B 2 (\det A)(x_2)=\det B_2 (detA)(x2)=detB2,即可得到 x 2 = det B 2 det A \pmb{x_2=\displaystyle\frac{\det B_2}{\det A}} x2=detAdetB2.
【例1】求解 3 x 1 + 4 x 2 = 2 3x_1+4x_2=\pmb2 3x1+4x2=2 和 5 x 1 + 6 x 2 = 4 5x_1+6x_2=\pmb4 5x1+6x2=4 需要三个行列式: det A = ∣ 3 4 5 6 ∣ , det B 1 = ∣ 2 4 4 6 ∣ , det B 2 = ∣ 3 2 5 4 ∣ \pmb{\det A}=\begin{vmatrix}3&4\\5&6\end{vmatrix},\kern 12pt\pmb{\det B_1}=\begin{vmatrix}\pmb2&4\\\pmb4&6\end{vmatrix},\kern 12pt\pmb{\det B_2}=\begin{vmatrix}3&\pmb2\\5&\pmb4\end{vmatrix} detA= 3546 ,detB1= 2446 ,detB2= 3524 A 1 , B 1 , B 2 A_1,B_1,B_2 A1,B1,B2 的行列式分别是 − 2 , − 4 -2,-4 −2,−4 和 2 2 2,所有的比值都是除以 det A = − 2 \det A=-2 detA=−2: 求解 x = A − 1 b : x 1 = − 4 − 2 = 2 , x 2 = 2 − 2 = − 1 , 检验 [ 3 4 5 6 ] [ 2 − 1 ] = [ 2 4 ] 求解\kern 3pt\boldsymbol x=A^{-1}\boldsymbol b:\kern 13ptx_1=\frac{-4}{-2}=2,\kern 10ptx_2=\frac{2}{-2}=-1,\kern 11pt\pmb{检验}\kern 4pt\begin{bmatrix}3&4\\5&6\end{bmatrix}\begin{bmatrix}\kern 7pt2\\-1\end{bmatrix}=\begin{bmatrix}2\\4\end{bmatrix} 求解x=A−1b:x1=−2−4=2,x2=−22=−1,检验[3546][2−1]=[24]
克拉默法则(CRAMER’s RULE) \kern 5pt 如果 det A \det A detA 不为零, A x = b A\boldsymbol x=\boldsymbol b Ax=b 可以由行列式求出: x 1 = det B 1 det A x 2 = det B 2 det A ⋯ x n = det B n det A ( 5.3.4 ) {\color{blue}x_1=\frac{\det B_1}{\det A}\kern 15ptx_2=\frac{\det B_2}{\det A}\kern 15pt\cdots\kern 15ptx_n=\frac{\det B_n}{\det A}}\kern 20pt(5.3.4) x1=detAdetB1x2=detAdetB2⋯xn=detAdetBn(5.3.4)矩阵 B j B_j Bj 是把 A A A 的第 j j j 列用向量 b \boldsymbol b b 替换。
要求洁 n × n n\times n n×n 的系统,克拉默法则要计算 n + 1 n+1 n+1 个行列式( A A A 和 n n n 个不同的 B B B),每个行列式都是 n ! n! n! 个项的和 —— 使用所有排列的 “大公式”,这些总共会有 ( n + 1 ) ! (n+1)! (n+1)! 项。使用这种方法来求解那无疑是疯狂的,但是我们最终有了一个明确的求解 x \boldsymbol x x 的公式。
二、逆矩阵
【例2】克拉默法则对于数字来说没什么效率,但是确很适合字母。对于
n
=
2
n=2
n=2 的情况,通过求解
A
A
−
1
=
I
AA^{-1}=I
AA−1=I 得到
A
−
1
=
[
x
y
]
A^{-1}=\begin{bmatrix}\boldsymbol x&\boldsymbol y\end{bmatrix}
A−1=[xy] 的列:
A
−
1
的列是
x
和
y
[
a
b
c
d
]
[
x
1
x
2
]
=
[
1
0
]
[
a
b
c
d
]
[
y
1
y
2
]
=
[
0
1
]
\pmb{A^{-1}\,的列是\,\boldsymbol x\,和\,\boldsymbol y}\kern 15pt\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}\pmb1\\\pmb0\end{bmatrix}\kern 15pt\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}y_1\\y_2\end{bmatrix}=\begin{bmatrix}\pmb0\\\pmb1\end{bmatrix}
A−1的列是x和y[acbd][x1x2]=[10][acbd][y1y2]=[01]它们有相同的矩阵
A
A
A,我们需要
∣
A
∣
|A|
∣A∣ 和关于
x
1
,
x
2
,
y
1
,
y
2
x_1,x_2,y_1,y_2
x1,x2,y1,y2 的四个行列式:
∣
a
b
c
d
∣
和
∣
1
b
0
d
∣
,
∣
a
1
c
0
∣
,
∣
0
b
1
d
∣
,
∣
a
0
c
1
∣
\begin{vmatrix}a&b\\c&d\end{vmatrix}和\begin{vmatrix}\pmb1&b\\\pmb0&d\end{vmatrix},\kern 8pt\begin{vmatrix}a&\pmb1\\c&\pmb0\end{vmatrix},\kern 8pt\begin{vmatrix}\pmb0&b\\\pmb1&d\end{vmatrix},\kern 8pt\begin{vmatrix}a&\pmb0\\c&\pmb1\end{vmatrix}
acbd
和
10bd
,
ac10
,
01bd
,
ac01
后四个行列式分别是
d
,
−
c
,
−
b
,
a
d,-c,-b,a
d,−c,−b,a(它们都是代数余子式!)下面是
A
−
1
A^{-1}
A−1:
x
1
=
d
∣
A
∣
,
x
2
=
−
c
∣
A
∣
,
y
1
=
−
b
∣
A
∣
,
y
2
=
a
∣
A
∣
,则
A
−
1
=
1
a
d
−
b
c
[
d
−
b
−
c
a
]
x_1=\frac{d}{|A|},\kern 7ptx_2=\frac{-c}{|A|},\kern 7pty_1=\frac{-b}{|A|},\kern 7pty_2=\frac{a}{|A|},则\,A^{-1}=\frac{1}{ad-bc}\begin{bmatrix}\kern 7ptd&-b\\-c&\kern 7pta\end{bmatrix}
x1=∣A∣d,x2=∣A∣−c,y1=∣A∣−b,y2=∣A∣a,则A−1=ad−bc1[d−c−ba]这里选择
2
×
2
2\times2
2×2 的矩阵,重点会很清晰。新的概念是:
A
−
1
A^{-1}
A−1 和代数余子式有关。当右侧是单位矩阵
I
I
I 的一列,就如同
A
A
−
1
=
I
AA^{-1}=I
AA−1=I,克拉默法则中的每个
B
j
B_j
Bj 的行列式都是
A
A
A 的一个代数余子式。
对于
n
=
3
n=3
n=3 的情况也可以看到这些代数余子式,求解
A
x
=
(
1
,
0
,
0
)
A\boldsymbol x=(1,0,0)
Ax=(1,0,0) 来得到
A
−
1
A^{-1}
A−1 的第
1
1
1 列:
B
′
s
的行列式
=
A
的代数余子式
∣
1
a
12
a
13
0
a
22
a
23
0
a
32
a
33
∣
∣
a
11
1
a
13
a
21
0
a
23
a
31
0
a
33
∣
∣
a
11
a
12
1
a
21
a
22
0
a
31
a
32
0
∣
(
5.3.5
)
\begin{array}{l}\pmb{B's\,的行列式}\\\pmb{=A的代数余子式}\end{array}\kern 6pt\begin{vmatrix}\pmb1&a_{12}&a_{13}\\\pmb0&a_{22}&a_{23}\\\pmb0&a_{32}&a_{33}\end{vmatrix}\kern 6pt\begin{vmatrix}a_{11}&\pmb1&a_{13}\\a_{21}&\pmb0&a_{23}\\a_{31}&\pmb0&a_{33}\end{vmatrix}\kern 6pt\begin{vmatrix}a_{11}&a_{12}&\pmb1\\a_{21}&a_{22}&\pmb0\\a_{31}&a_{32}&\pmb0\end{vmatrix}\kern 15pt(5.3.5)
B′s的行列式=A的代数余子式
100a12a22a32a13a23a33
a11a21a31100a13a23a33
a11a21a31a12a22a32100
(5.3.5)第一个行列式
∣
B
1
∣
|B_1|
∣B1∣ 是代数余子式
C
11
=
a
22
a
33
−
a
23
a
32
C_{11}=a_{22}a_{33}-a_{23}a_{32}
C11=a22a33−a23a32,第二个行列式
∣
B
2
∣
|B_2|
∣B2∣ 是代数余子式
C
12
C_{12}
C12,注意前面有一个负号
−
(
a
21
a
33
−
a
23
a
31
)
-(a_{21}a_{33}-a_{23}a_{31})
−(a21a33−a23a31),这个代数余子式
C
12
C_{12}
C12 在
A
−
1
A^{-1}
A−1 的第一列,当我们除以
det
A
\det A
detA,就可以得到逆矩阵!
A − 1 A^{-1} A−1 的第 i , j i,j i,j 元素是代数余子式 C j i C_{ji} Cji(不是 C i j C_{ij} Cij)除以 det A \det A detA: A − 1 的公式 ( A − 1 ) i j = C j i det A 和 A − 1 = C T det A ( 5.3.6 ) \pmb{A^{-1}\,的公式}\kern 15pt{\color{blue}(A^{-1})_{ij}=\frac{C_{ji}}{\det A}}\,和\,{\color{blue}A^{-1}=\frac{C^T}{\det A}}\kern 18pt(5.3.6) A−1的公式(A−1)ij=detACji和A−1=detACT(5.3.6)
代数余子式
C
i
j
C_{ij}
Cij 进到 “代数余子式矩阵”(cofactor matrix)
C
C
C,
C
C
C 的转置得到
A
−
1
A^{-1}
A−1,
C
T
C^{T}
CT 称为伴随矩阵。要计算
A
−
1
A^{-1}
A−1 的第
i
,
j
i,j
i,j 元素,去掉
A
A
A 的第
j
j
j 行和第
i
i
i 列的行列式,然后
(
−
1
)
i
+
j
(-1)^{i+j}
(−1)i+j 乘上这个行列式得到代数余子式
C
j
i
C_{ji}
Cji,最后再除以
det
A
\det A
detA。
用
A
−
1
A^{-1}
A−1 的第
3
,
1
3,1
3,1 个元素来检验一下这个规则。对于列
1
1
1 我们要求解
A
x
=
(
1
,
0
,
0
)
A\boldsymbol x=(1,0,0)
Ax=(1,0,0),第三个分量
x
3
x_3
x3 是式(5.3.5)的第三个行列式除以
det
A
\det A
detA,这个行列式就是代数余子式
C
13
=
a
21
a
32
−
a
22
a
31
C_{13}=a_{21}a_{32}-a_{22}a_{31}
C13=a21a32−a22a31。所以
(
A
−
1
)
31
=
C
13
/
det
A
(A^{-1})_{31}=C_{13}/\det A
(A−1)31=C13/detA。
总结: 求解
A
A
−
1
=
I
AA^{-1}=I
AA−1=I 时,
I
I
I 的每一列得到
A
−
1
A^{-1}
A−1 的每一列。
A
−
1
A^{-1}
A−1 的每个元素都是一个比值:大小为
n
−
1
n-1
n−1 的行列式 / 大小为
n
n
n 的行列式。
直接证明公式
A
−
1
=
C
T
/
det
A
\pmb{A^{-1}=C^{T}/\det A}
A−1=CT/detA :即
A
C
T
=
(
det
A
)
I
\pmb{AC^T=(\det A)I}
ACT=(detA)I:
[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ C 11 C 21 C 31 C 12 C 22 C 32 C 13 C 23 C 33 ] = [ det A 0 0 0 det A 0 0 0 det A ] ( 5.3.7 ) \begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}\begin{bmatrix}C_{11}&C_{21}&C_{31}\\C_{12}&C_{22}&C_{32}\\C_{13}&C_{23}&C_{33}\end{bmatrix}=\begin{bmatrix}{\color{blue}\det A}&0&0\\0&{\color{blue}\det A}&0\\0&0&{\color{blue}{\det A}}\end{bmatrix}\kern 13pt(5.3.7) a11a21a31a12a22a32a13a23a33 C11C12C13C21C22C23C31C32C33 = detA000detA000detA (5.3.7)
(
A
的第
1
行
)
(A\,的第\,1\,行)
(A的第1行) 乘
(
C
T
的第
1
列
)
(C^T\,的第\,1\,列)
(CT的第1列) 得到右侧的第一个
det
A
\det A
detA:
a
11
C
11
+
a
12
C
12
+
a
13
C
13
=
det
A
这个就是代数余子式公式!
a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}=\det A\kern 10pt这个就是代数余子式公式!
a11C11+a12C12+a13C13=detA这个就是代数余子式公式!同理,
A
A
A 的第
2
2
2 行乘
C
T
C^T
CT(注意转置) 的第
2
2
2 列也得到
det
A
\det A
detA,元素
a
2
j
a_{2j}
a2j 应乘上代数余子式
C
2
j
C_{2j}
C2j 以得到行列式。
下面解释式(5.3.7)中的非对角线元素为什么是零?
A
A
A 的行乘上不同行的代数余子式,为什么是零呢?
A
的第
2
行
C
的第
1
行
a
21
C
11
+
a
22
C
12
+
a
23
C
13
=
0
(
5.3.8
)
\begin{matrix}\pmb{A\,的第\,2\,行}\\\pmb{C\,的第\,1\,行}\end{matrix}\kern 15pta_{21}C_{11}+a_{22}C_{12}+a_{23}C_{13}=0\kern 20pt(5.3.8)
A的第2行C的第1行a21C11+a22C12+a23C13=0(5.3.8)原因:这是一个新矩阵的代数余子式公式,将
A
A
A 的第二行复制到它的第一行,则新矩阵
A
∗
A^*
A∗ 就有两个相等的行,所以式(5.3.8)中的
det
A
∗
=
0
\det A^*=0
detA∗=0,注意
A
∗
A^*
A∗ 和
A
A
A 有相同的代数余子式
C
11
,
C
12
,
C
13
C_{11},C_{12},C_{13}
C11,C12,C13,因为除了第一行其它行都是一样的。所以式(5.3.7)是正确的:
A
C
T
=
(
det
A
)
I
或
A
−
1
=
C
T
det
A
AC^T=(\det A)I\kern 15pt或\kern 15ptA^{-1}=\frac{C^T}{\det A}
ACT=(detA)I或A−1=detACT【例3】“求和矩阵”
A
A
A 的行列式为
1
1
1,则
A
−
1
A^{-1}
A−1 只包含代数余子式:
A
=
[
1
0
0
0
1
1
0
0
1
1
1
0
1
1
1
1
]
的逆矩阵是
A
−
1
=
C
T
1
=
[
1
0
0
0
−
1
1
0
0
0
−
1
1
0
0
0
−
1
1
]
A=\begin{bmatrix}1&0&0&0\\1&1&0&0\\1&1&1&0\\1&1&1&1\end{bmatrix}的逆矩阵是\kern 5ptA^{-1}=\frac{C^T}{1}=\begin{bmatrix}\kern 7pt1&\kern 7pt0&\kern 7pt0&0\\-1&\kern 7pt1&\kern 7pt0&0\\\kern 7pt0&-1&\kern 7pt1&0\\\kern 7pt0&\kern 7pt0&-1&1\end{bmatrix}
A=
1111011100110001
的逆矩阵是A−1=1CT=
1−10001−10001−10001
去掉
A
A
A 的第
1
1
1 行和第
1
1
1 列可得
3
×
3
3\times3
3×3 的代数余子式
C
11
=
1
C_{11}=1
C11=1,然后去掉
A
A
A 的第
1
1
1 行和第
2
2
2 列得到
C
12
C_{12}
C12,这个
3
×
3
3\times3
3×3 的子矩阵仍然是三角形的,行列式为
1
1
1,但是由于符号是
(
−
1
)
1
+
2
(-1)^{1+2}
(−1)1+2,所以代数余子式
C
12
C_{12}
C12 是
−
1
-1
−1,这个
−
1
-1
−1 是
A
−
1
A^{-1}
A−1 的元素
(
2
,
1
)
(2,1)
(2,1),不要忘了
C
C
C 需要转置。
三角矩阵的逆矩阵也是三角矩阵。代数余子式可以给出解释。
【例4】如果所有的代数余子式都不是零,那么
A
A
A 一定是可逆的吗?
\kern 5pt
答: 不可能 !
三、三角形的面积
我们都知道矩形的面积是底乘高,三角形的面积是底乘高的一半。但是下面这个问题无法用这些公式来回答。如果我们已知三角形的三个角
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
\pmb{(x_1,y_1),(x_2,y_2)}
(x1,y1),(x2,y2) 和
(
x
3
,
y
3
)
\pmb{(x_3,y_3)}
(x3,y3),它的面积是多少?用这些角求出底和高并不算是一个好方法。
这个问题行列式是求面积最好的方法。三角形的面积是一个
3
×
3
\pmb{3\times3}
3×3 的行列式的一半。这里并不会出现底和高中的那些平方根。如果一个角是原点,即
(
x
3
,
y
3
)
=
(
0
,
0
)
(x_3,y_3)=(0,0)
(x3,y3)=(0,0),则行列式只是一个
2
×
2
2\times2
2×2 的。
三角形的三个角在 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1),(x_2,y_2) (x1,y1),(x2,y2) 和 ( x 3 , y 3 ) (x_3,y_3) (x3,y3),则它的 面积 = 行列式/2: 三角形的面积 1 2 ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ 当 ( x 3 , y 3 ) = ( 0 , 0 ) 时,面积 = 1 2 ∣ x 1 y 1 x 2 y 2 ∣ \pmb{三角形的面积}\kern 10pt\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}\kern 15pt当\,(x_3,y_3)=(0,0)\,时,面积=\frac{1}{2}\begin{vmatrix}x_1&y_1\\x_2&y_2\end{vmatrix} 三角形的面积21 x1x2x3y1y2y3111 当(x3,y3)=(0,0)时,面积=21 x1x2y1y2
若在
3
×
3
3\times3
3×3 的行列式中令
x
3
=
y
3
=
0
x_3=y_3=0
x3=y3=0,则通过代数余子式展开就可以得到一个
2
×
2
2\times2
2×2 的行列式,这些公式没有平方根,也很容易记忆。
3
×
3
3\times3
3×3 的行列式利用代数余子式展开可以分成
3
3
3 个
2
×
2
2\times2
2×2 的行列式,就如 Figure 5.1 中的第三个三角形,分成了三个一个角为
(
0
,
0
)
(0,0)
(0,0) 的特殊三角形:
面积
=
1
2
∣
x
1
y
1
1
x
2
y
2
1
x
3
y
3
1
∣
=
1
2
(
x
1
y
2
−
x
2
y
1
)
+
1
2
(
x
2
y
3
−
x
3
y
2
)
+
1
2
(
x
3
y
1
−
x
1
y
3
)
(
5.3.9
)
\pmb{面积}=\frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}=\frac{1}{2}(x_1y_2-x_2y_1)+\frac{1}{2}(x_2y_3-x_3y_2)+\frac{1}{2}(x_3y_1-x_1y_3)\kern 15pt(5.3.9)
面积=21
x1x2x3y1y2y3111
=21(x1y2−x2y1)+21(x2y3−x3y2)+21(x3y1−x1y3)(5.3.9)如果
(
0
,
0
)
(0,0)
(0,0) 在三角形的外面,则其中两个三角形的面积可能是负的,但是和是对的。真正的问题是解释一个角是
(
0
,
0
)
(0,0)
(0,0) 的三角形的面积。
为什么
1
2
∣
x
1
y
2
−
x
2
y
1
∣
\displaystyle\frac{1}{2}|x_1y_2-x_2y_1|
21∣x1y2−x2y1∣ 是三角形的面积呢?我们将因数
1
2
\displaystyle\frac{1}{2}
21 移去,将剩下的当成一个平行四边形(面积变为原来的两倍,因为平行四边形包含两个相等的三角形)。现在证明平行四边形的面积是行列式
x
1
y
2
−
x
2
y
1
x_1y_2-x_2y_1
x1y2−x2y1,Figure 5.2 中的面积是
11
11
11,因此三角形的面积是
11
2
\displaystyle\frac{11}{2}
211。
证明从
(
0
,
0
)
开始的平行四边形的面积
=
2
×
2
的行列式
\pmb{证明从\,(0,0)\,开始的平行四边形的面积=2\times2\,的行列式}
证明从(0,0)开始的平行四边形的面积=2×2的行列式证明的方法有很多种,这里选择从行列式的性质来证明。我们要证明面积和行列式有同样的性质
1
−
2
−
3
1-2-3
1−2−3,则 面积 = 行列式 !满足这三个性质就可以定义行列式,然后推出其它的所有性质。
- 当 A = I A=I A=I,平行四边形将变成一个单位的正方形,它的面积是 det I = 1 \det I=1 detI=1。
- 若进行行交换,行列式的符号会反转。绝对值(正的面积)保持不变,这是因为它是相同的平行四边形。
- 如果行 1 1 1 乘上 t t t,Figure 5.3a 表示面积也会乘上 t t t。假设一个新行 ( x 1 ′ , y 1 ′ ) (x'_1,y'_1) (x1′,y1′) 加到 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)(第 2 2 2 行固定),Figure 5.3b 表明实线平行四边形的面积加起来等于虚线平行四边形的面积(因为两个虚线三角形的面积相等),注意这个图都是在同一平面上,而不是立体的!
这是一个奇异的证明,我们使用了平面几何的知识。但是这个证明的主要吸引力是它也适用于
n
n
n 维的情形。从原点出发的
n
n
n 个边得到一个
n
×
n
n\times n
n×n 矩阵的行,这个盒子会有更多的边来完成,就行平行四边形一样。
Figure 5.4 画出了一个三维的盒子,它的边都不是直角。它的体积等于
det
A
\pmb{\det A}
detA 的绝对值。我们证明需要再次验证这个体积满足行列式的性质
1
−
3
1-3
1−3。当一条边被因数
t
t
t 拉伸,它的体积会乘上
t
t
t。若边
1
1
1 加到边
1
′
1'
1′ 上,体积将会是两个原始体积之和。这是将 Figure 5.3b 提升至三维甚至是
n
n
n 维的情况,再高的维度我们就无法画出了。
单位立方体的体积 =
1
1
1,就是
det
I
\det I
detI。行交换即是边的交换得到相同的盒子,它们体积的绝对值是相等的。行列式改变符号,表明是右手系(
det
A
>
0
\det A>0
detA>0)或是左手系(
det
A
<
0
\det A<0
detA<0)。盒子的体积满足行列式的性质,所以体积 =
det
A
\det A
detA 的绝对值。
【例5】假设一个矩形盒子( 90 ° 90° 90° 角)的边长是 r , s , t r,s,t r,s,t,则它的体积是 r r r 乘 s s s 乘 t t t。对角矩阵 A A A 的元素 r , s , t r,s,t r,s,t 生成这三个边, det A \det A detA 也等于体积 r s t rst rst。
【例6】微积分中,盒子是无限小的!若要对一个圆积分,我们可能要将 x x x 和 y y y 转变成 r r r 和 θ \theta θ,这是极坐标系的转换: x = r cos θ , y = r sin θ x=r\cos\theta,y=r\sin\theta x=rcosθ,y=rsinθ。极坐标盒子的面积是行列式 J J J 乘 d r d θ \textrm dr\,\textrm d\theta drdθ: 微积分中的面积 J = ∣ ∂ x / ∂ r ∂ x / ∂ θ ∂ y / ∂ r ∂ y / ∂ θ ∣ = ∣ cos θ − r sin θ sin θ r cos θ ∣ = r \pmb{微积分中的面积}\kern 15ptJ=\begin{vmatrix}\partial x/\partial r&\partial x/\partial\theta\\\partial y/\partial r&\partial y/\partial\theta\end{vmatrix}=\begin{vmatrix}\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta\end{vmatrix}=r 微积分中的面积J= ∂x/∂r∂y/∂r∂x/∂θ∂y/∂θ = cosθsinθ−rsinθrcosθ =r在小面积 d A = r d r d θ \textrm dA=r\,\textrm dr\,\textrm d\theta dA=rdrdθ 的行列式是 r r r,拉伸因子 J J J 进到双重积分,就像 d x / d u \textrm dx/\textrm du dx/du 进入到正常积分 ∫ d x = ∫ ( d x / d u ) d u \int\textrm dx=\int(\textrm dx/\textrm du)\textrm du ∫dx=∫(dx/du)du。在三重积分中, 3 × 3 3\times3 3×3 的雅可比矩阵有 9 9 9 个导数。
四、叉积
叉积(cross product)是行列式的另一个应用,尤其对于三维情况。从向量
u
=
(
u
1
,
u
2
,
u
3
)
\boldsymbol u=(u_1,u_2,u_3)
u=(u1,u2,u3) 和
v
=
(
v
1
,
v
2
,
v
3
)
\boldsymbol v=(v_1,v_2,v_3)
v=(v1,v2,v3) 开始,它不像点积是一个数字,叉积是一个向量 —— 也是三维的。写作
u
×
v
\boldsymbol u\times\boldsymbol v
u×v,读作
u
\boldsymbol u
u 叉乘(cross)
v
\boldsymbol v
v。叉积的分量是
2
×
2
2\times2
2×2 的代数余子式,下面会有叉积的一些性质,这些性质使得
u
×
v
\boldsymbol u\times \boldsymbol v
u×v 在几何学和物理学中非常有用。
叉积的定义:
定义: u = ( u 1 , u 2 , u 3 ) \kern 5pt\boldsymbol u=(u_1,u_2,u_3) u=(u1,u2,u3) 和 v = ( v 1 , v 2 , v 3 ) \boldsymbol v=(v_1,v_2,v_3) v=(v1,v2,v3) 的叉积是一个向量 u × v = ∣ i j k u 1 u 2 u 3 v 1 v 2 v 3 ∣ = ( u 2 v 3 − u 3 v 2 ) i + ( u 3 v 1 − u 1 v 3 ) j + ( u 1 v 2 − u 2 v 1 ) k ( 5.3.10 ) {\color{blue}\boldsymbol u\times \boldsymbol v}={\color{blue}\begin{vmatrix}\boldsymbol i&\boldsymbol j&\boldsymbol k\\u_1&u_2&u_3\\v_1&v_2&v_3\end{vmatrix}}=(u_2v_3-u_3v_2)\boldsymbol i+(u_3v_1-u_1v_3)\boldsymbol j+(u_1v_2-u_2v_1)\boldsymbol k\kern 16pt(5.3.10) u×v= iu1v1ju2v2ku3v3 =(u2v3−u3v2)i+(u3v1−u1v3)j+(u1v2−u2v1)k(5.3.10)向量 u × v \boldsymbol u\times\boldsymbol v u×v 垂直于 u \boldsymbol u u 和 v \boldsymbol v v,叉积 v × u = − ( u × v ) \boldsymbol v\times\boldsymbol u=-(\boldsymbol u\times\boldsymbol v) v×u=−(u×v)。
注解:
3
×
3
3\times3
3×3 的行列式是记住
u
×
v
\boldsymbol u\times\boldsymbol v
u×v 最简单的方法,这种并不太合法,因为第一行是向量
i
,
j
,
k
\boldsymbol i,\boldsymbol j,\boldsymbol k
i,j,k,后面两行都是数字。在行列式中,向量
i
=
(
1
,
0
,
0
)
\boldsymbol i=(1,0,0)
i=(1,0,0) 乘
u
2
v
3
u_2v_3
u2v3 和
−
u
3
v
2
-u_3v_2
−u3v2,得到的是
(
u
2
v
3
−
u
3
v
2
,
0
,
0
)
(u_2v_3-u_3v_2,0,0)
(u2v3−u3v2,0,0),这就是叉积的第一个分量。
注意下标的循环模式:
2
2
2 和
3
3
3 得到
u
×
v
\boldsymbol u\times\boldsymbol v
u×v 的分量
1
1
1;
3
3
3 和
1
1
1 得到分量
2
2
2;
1
1
1 和
2
2
2 得到分量
3
3
3。这些就完成了
u
×
v
\boldsymbol u\times\boldsymbol v
u×v 的定义。下面列出叉积的性质:
性质1:
v
×
u
\boldsymbol v\times\boldsymbol u
v×u 会较好行列式的第
2
2
2 行和第
3
3
3 行,所以它等于
−
(
u
×
v
)
-(\boldsymbol u\times\boldsymbol v)
−(u×v)。
性质2: 叉积
u
×
v
\boldsymbol u\times\boldsymbol v
u×v 垂直于
u
\boldsymbol u
u(也垂直于
v
\boldsymbol v
v)。直接的证明就是做点积,展开后各项消去后得到零:
u
⋅
(
u
×
v
)
=
u
1
(
u
2
v
3
−
u
3
v
2
)
+
u
2
(
u
3
v
1
−
u
1
v
3
)
+
u
3
(
u
1
v
2
−
u
2
v
1
)
=
0
(
5.3.11
)
\boldsymbol u\cdot(\boldsymbol u\times\boldsymbol v)=u_1(u_2v_3-u_3v_2)+u_2(u_3v_1-u_1v_3)+u_{3}(u_1v_2-u_2v_1)=0\kern 14pt(5.3.11)
u⋅(u×v)=u1(u2v3−u3v2)+u2(u3v1−u1v3)+u3(u1v2−u2v1)=0(5.3.11)上式就是
u
⋅
(
u
×
v
)
\boldsymbol u\cdot(\boldsymbol u\times\boldsymbol v)
u⋅(u×v) 的代数余子式公式,这个行列式的行分别是
u
,
u
\boldsymbol u,\boldsymbol u
u,u 和
v
\boldsymbol v
v,有两个相等的行,所以结果是零。
性质3: 任何向量与它自己的叉积(两个相等的行)
u
×
u
=
0
\boldsymbol u\times\boldsymbol u=\boldsymbol 0
u×u=0.
若
u
\boldsymbol u
u 和
v
\boldsymbol v
v 平行,叉积是零;若
u
\boldsymbol u
u 和
v
\boldsymbol v
v 垂直,则点积为零。因为一个含有
sin
θ
\sin\theta
sinθ,另一个含有
cos
θ
\cos\theta
cosθ:
∣ ∣ u × v ∣ ∣ = ∣ ∣ u ∣ ∣ ∣ ∣ v ∣ ∣ ∣ sin θ ∣ ∣ u ⋅ v ∣ = ∣ ∣ u ∣ ∣ ∣ ∣ v ∣ ∣ ∣ cos θ ∣ ( 5.3.12 ) ||\boldsymbol u\times\boldsymbol v||=||\boldsymbol u||\,||\boldsymbol v||\,|\sin\theta|\kern 25pt|\boldsymbol u\cdot\boldsymbol v|=||\boldsymbol u||\,||\boldsymbol v||\,|\cos\theta|\kern 18pt(5.3.12) ∣∣u×v∣∣=∣∣u∣∣∣∣v∣∣∣sinθ∣∣u⋅v∣=∣∣u∣∣∣∣v∣∣∣cosθ∣(5.3.12)
【例7】 u = ( 3 , 2 , 0 ) \boldsymbol u=(3,2,0) u=(3,2,0) 和 v = ( 1 , 4 , 0 ) \boldsymbol v=(1,4,0) v=(1,4,0) 在 x y xy xy 平面, u × v \boldsymbol u\times\boldsymbol v u×v 沿着 z z z 轴向上: u × v = ∣ i j k 3 2 0 1 4 0 ∣ = 10 k . 叉积是 u × v = ( 0 , 0 , 10 ) . \boldsymbol u\times\boldsymbol v=\begin{vmatrix}\boldsymbol i&\boldsymbol j&\boldsymbol k\\3&2&0\\1&4&0\end{vmatrix}=10\boldsymbol k.\kern 15pt叉积是\,\boldsymbol u\times\boldsymbol v=(0,0,10). u×v= i31j24k00 =10k.叉积是u×v=(0,0,10). u × v \boldsymbol u\times\boldsymbol v u×v 的长度等于以 u \boldsymbol u u 和 v \boldsymbol v v 为边的平行四边形的面积,这个性质很重要,本例中面积是 10 10 10。
【例8】 u = ( 1 , 1 , 1 ) \boldsymbol u=(1,1,1) u=(1,1,1) 和 v = ( 1 , 1 , 2 ) \boldsymbol v=(1,1,2) v=(1,1,2) 的叉积是 ( 1 , − 1 , 0 ) (1,-1,0) (1,−1,0): ∣ i j k 1 1 1 1 1 2 ∣ = i ∣ 1 1 1 2 ∣ − j ∣ 1 1 1 2 ∣ + k ∣ 1 1 1 1 ∣ = i − j \begin{vmatrix}\boldsymbol i&\boldsymbol j&\boldsymbol k\\1&1&1\\1&1&2\end{vmatrix}=\boldsymbol i\begin{vmatrix}1&1\\1&2\end{vmatrix}-\boldsymbol j\begin{vmatrix}1&1\\1&2\end{vmatrix}+\boldsymbol k\begin{vmatrix}1&1\\1&1\end{vmatrix}=\boldsymbol i-\boldsymbol j i11j11k12 =i 1112 −j 1112 +k 1111 =i−j向量 ( 1 , − 1 , 0 ) (1,-1,0) (1,−1,0) 垂直于 ( 1 , 1 , 1 ) (1,1,1) (1,1,1) 和 ( 1 , 1 , 2 ) (1,1,2) (1,1,2),面积是 2 \sqrt2 2。
【例9】 i = ( 1 , 0 , 0 ) \boldsymbol i=(1,0,0) i=(1,0,0) 和 j = ( 0 , 1 , 0 ) \boldsymbol j=(0,1,0) j=(0,1,0) 的叉积遵循右手规则,叉积 k = i × j \boldsymbol k=\boldsymbol i\times\boldsymbol j k=i×j 是向上而不向下:
由右手规则,
i
×
j
=
k
\boldsymbol i\times\boldsymbol j=\boldsymbol k
i×j=k,也可以得到
j
×
k
=
i
\boldsymbol j\times\boldsymbol k=\boldsymbol i
j×k=i 和
k
×
i
=
j
\boldsymbol k\times\boldsymbol i=\boldsymbol j
k×i=j,注意这个循环的顺序。若是相反的顺序(反循环)拇指反向且叉积会指向另一边:
k
×
j
=
−
i
,
i
×
k
=
−
j
\boldsymbol k\times\boldsymbol j=-\boldsymbol i,\boldsymbol i\times\boldsymbol k=-\boldsymbol j
k×j=−i,i×k=−j 和
j
×
i
=
−
k
\boldsymbol j\times\boldsymbol i=-\boldsymbol k
j×i=−k。我们从
3
×
3
3\times3
3×3 的行列式中可以看到
3
3
3 个正号和
3
3
3 个负号。
u
×
v
\boldsymbol u\times\boldsymbol v
u×v 的定义可以基于向量,而不是它们的分量:
定义 \kern 5pt 叉积 是长度为 ∣ ∣ u ∣ ∣ ∣ ∣ v ∣ ∣ ∣ sin θ ∣ 的向量 \color{blue}\pmb{叉积}是长度为\,||\boldsymbol u||\,||\boldsymbol v||\,|\sin\theta| 的向量 叉积是长度为∣∣u∣∣∣∣v∣∣∣sinθ∣的向量。它的方向垂直于 u \boldsymbol u u 和 v \boldsymbol v v,方向 “向上” 或 “向下” 由右手规则决定。
这个定义在物理上很有用, ( u 1 , u 2 , u 3 ) (u_1,u_2,u_3) (u1,u2,u3) 是一个有质量物体的位置, ( F x , F y , F z ) (F_x,F_y,F_z) (Fx,Fy,Fz) 是作用在它上的力,如果 F \boldsymbol F F 和 u \boldsymbol u u 平行,则 u × F = 0 \boldsymbol u\times\boldsymbol F=\boldsymbol 0 u×F=0 —— 表示没有转动。叉积 u × F \boldsymbol u\times\boldsymbol F u×F 是转动力(turning force)或力矩(torque)。它的指向沿着转动轴(垂直于 u \boldsymbol u u 和 F \boldsymbol F F),它的长度 ∣ ∣ u ∣ ∣ ∣ ∣ F ∣ ∣ ∣ sin θ ∣ ||\boldsymbol u||\,||\boldsymbol F||\,|\sin\theta| ∣∣u∣∣∣∣F∣∣∣sinθ∣ 是产生转动的 “矩”(moment)的量测值。
五、三重积 = 行列式 = 体积
由于
u
×
v
\boldsymbol u\times\boldsymbol v
u×v 是一个向量,我们将它与第三个向量
w
\boldsymbol w
w 做点积,就得到三重积(triple product)
(
u
×
v
)
⋅
w
(\boldsymbol u\times\boldsymbol v)\cdot\boldsymbol w
(u×v)⋅w,这个称为 “数量” 三重积,因为它是一个数字,也称为混合积。实际上它也是一个行列式 —— 是边长为
u
,
v
,
w
\boldsymbol u,\boldsymbol v,\boldsymbol w
u,v,w 的盒子的体积:
三重积
(
u
×
v
)
⋅
w
=
∣
w
1
w
2
w
3
u
1
u
2
u
3
v
1
v
2
v
3
∣
=
∣
u
1
u
2
u
3
v
1
v
2
v
3
w
1
w
2
w
3
∣
(
5.3.13
)
\pmb{三重积}\kern 15pt{\color{blue}(\boldsymbol u\times\boldsymbol v)\cdot\boldsymbol w}=\begin{vmatrix}w_1&w_2&w_3\\u_1&u_2&u_3\\v_1&v_2&v_3\end{vmatrix}=\begin{vmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1&w_2&w_3\end{vmatrix}\kern 18pt(5.3.13)
三重积(u×v)⋅w=
w1u1v1w2u2v2w3u3v3
=
u1v1w1u2v2w2u3v3w3
(5.3.13)我们可以将
w
\boldsymbol w
w 放在顶部或者底部,这两个行列式是相等的,因为从一个到另一个行列式需要进行两次行交换。注意当行列式为零时:
(
u
×
v
)
⋅
w
=
0
当且仅当向量
u
,
v
,
w
在同一平面上
(\boldsymbol u\times\boldsymbol v)\cdot\boldsymbol w=0\kern 10pt当且仅当向量\,\boldsymbol u,\boldsymbol v,\boldsymbol w\,在同一平面上
(u×v)⋅w=0当且仅当向量u,v,w在同一平面上原因一:
u
×
v
\boldsymbol u\times\boldsymbol v
u×v 垂直于这个平面,所以它与
w
\boldsymbol w
w 的点积为零。
原因二: 一个平面内的三个向量是相关的,矩阵是奇异的(
det
=
0
\det =0
det=0)。
原因三: 当
u
,
v
,
w
\boldsymbol u,\boldsymbol v,\boldsymbol w
u,v,w 的盒子展成一个平面,它的体积为零。
(
u
×
v
)
⋅
w
(\boldsymbol u\times\boldsymbol v)\cdot\boldsymbol w
(u×v)⋅w 等于边是
u
,
v
,
w
\boldsymbol u,\boldsymbol v,\boldsymbol w
u,v,w 的盒子的体积这个性质非常重要,这个
3
×
3
3\times3
3×3 的行列式携带了大量的信息。像
a
d
−
b
c
ad-bc
ad−bc 对于
2
×
2
2\times2
2×2 的矩阵,它可以分成可逆和奇异。
六、主要内容总结
- 克拉默法则是用行列式的比值求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b,如 x 1 = ∣ B 1 ∣ ∣ A ∣ = ∣ b a 1 ⋯ a n ∣ ∣ A ∣ x_1=\displaystyle\frac{|B_1|}{|A|}=\frac{\begin{vmatrix}\boldsymbol b&\boldsymbol a_1&\cdots&\boldsymbol a_n\end{vmatrix}}{|A|} x1=∣A∣∣B1∣=∣A∣ ba1⋯an 。
- C C C 是 A A A 的代数余子式矩阵, C T C^T CT 是 A A A 的伴随矩阵,则逆矩阵 A − 1 = C T det A A^{-1}=\displaystyle\frac{C^T}{\det A} A−1=detACT。
- 当盒子的边是 A A A 的行时,盒子的体积是 ∣ det A ∣ |\det A| ∣detA∣。
- 在二重和三重积分中,面积和体积需要改变变量。
- 在 R 3 \textrm {\pmb R}^3 R3 中,叉积 u × v \boldsymbol u\times\boldsymbol v u×v 垂直于 u \boldsymbol u u 和 v \boldsymbol v v。注意 i × j = k \boldsymbol i\times\boldsymbol j=\boldsymbol k i×j=k。
七、例题
【例10】如果
A
A
A 是奇异的,则方程
A
C
T
=
(
det
A
)
I
AC^T=(\det A)I
ACT=(detA)I 将变成
A
C
T
=
零矩阵
\pmb{AC^T=零矩阵}
ACT=零矩阵。
C
T
C^T
CT 的每一列都在
A
A
A 的零空间中,这些列包含沿着
A
A
A 的行的代数余子式。所以代数余子式可以快速的找到秩
2
2
2 的
3
×
3
3\times3
3×3 的矩阵的零空间。
对于下面秩
2
2
2 的奇异矩阵,通过
x
=
沿着一行的代数余子式
\boldsymbol x=沿着一行的代数余子式
x=沿着一行的代数余子式 来求解
A
x
=
0
A\boldsymbol x=\boldsymbol 0
Ax=0:
代数余子式得到零空间
A
=
[
1
4
7
2
3
9
2
2
8
]
A
=
[
1
1
2
1
1
1
1
1
1
]
\pmb{代数余子式得到零空间}\kern 10ptA=\begin{bmatrix}1&4&7\\2&3&9\\2&2&8\end{bmatrix}\kern 10ptA=\begin{bmatrix}1&1&2\\1&1&1\\1&1&1\end{bmatrix}
代数余子式得到零空间A=
122432798
A=
111111211
解: 第一个矩阵沿着第一行的代数余子式如下(注意每个负号):
∣
3
9
2
8
∣
=
6
−
∣
2
9
2
8
∣
=
2
∣
2
3
2
2
∣
=
−
2
\begin{vmatrix}3&9\\2&8\end{vmatrix}=6\kern 20pt-\begin{vmatrix}2&9\\2&8\end{vmatrix}=2\kern 20pt\begin{vmatrix}2&3\\2&2\end{vmatrix}=-2
3298
=6−
2298
=2
2232
=−2则
x
=
(
6
,
2
,
−
2
)
\boldsymbol x=(6,2,-2)
x=(6,2,−2) 是
A
x
=
0
A\boldsymbol x=\boldsymbol 0
Ax=0 的解。沿着第二行的代数余子式是
(
−
18
,
−
6
,
6
)
(-18,-6,6)
(−18,−6,6),这就是
−
3
x
-3\boldsymbol x
−3x,它也在
A
A
A 的一维零空间中。
第二个矩阵沿着第一行的代数余子式都是零,零向量
x
=
(
0
,
0
,
0
)
\boldsymbol x=(0,0,0)
x=(0,0,0) 没什么意义,沿着第二行的代数余子式得到
x
=
(
1
,
−
1
,
0
)
\boldsymbol x=(1,-1,0)
x=(1,−1,0),它是
A
x
=
0
A\boldsymbol x=\boldsymbol 0
Ax=0 的解。
每个秩为
n
−
1
n-1
n−1 的
n
×
n
n\times n
n×n 矩阵至少有一个沿着某一行非零的代数余子式,但是对于秩
n
−
2
n-2
n−2 的矩阵,所有的代数余子式都为零,我们就只能找到
x
=
0
\boldsymbol x=\boldsymbol 0
x=0 这一个解。
【例9】使用克拉默法则的比值
det
B
j
det
A
\displaystyle\frac{\det B_j}{\det A}
detAdetBj 来求解
A
x
=
b
A\boldsymbol x=\boldsymbol b
Ax=b,也求出逆矩阵
A
−
1
=
C
T
det
A
A^{-1}=\displaystyle\frac{C^T}{\det A}
A−1=detACT。对于
b
=
(
0
,
0
,
1
)
\boldsymbol b=(0,0,1)
b=(0,0,1),解
x
\boldsymbol x
x 是
A
−
1
A^{-1}
A−1 的第
3
3
3 列! 在计算列
x
=
(
x
,
y
,
z
)
\boldsymbol x=(x,y,z)
x=(x,y,z) 时,都和那些代数余子式相关?
A
−
1
的第
3
列
[
2
6
2
1
4
2
5
9
0
]
[
x
y
z
]
=
[
0
0
1
]
\pmb{A^{-1}\,的第\,3\,列}\kern 15pt\begin{bmatrix}2&6&2\\1&4&2\\5&9&0\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\0\\1\end{bmatrix}
A−1的第3列
215649220
xyz
=
001
求两个盒子的体积:边是
A
A
A 的列和边是
A
−
1
A^{-1}
A−1 的行。
解:
B
j
B_j
Bj 的行列式(右侧的
b
\boldsymbol b
b 代替第
j
j
j 列)是:
∣
B
1
∣
=
∣
0
6
2
0
4
2
1
9
0
∣
=
4
∣
B
2
∣
=
∣
2
0
2
1
0
2
5
1
0
∣
=
−
2
∣
B
3
∣
=
∣
2
6
0
1
4
0
5
9
1
∣
=
2
|B_1|=\begin{vmatrix}\pmb0&6&2\\\pmb0&4&2\\\pmb1&9&0\end{vmatrix}=4\kern 20pt|B_2|=\begin{vmatrix}2&\pmb0&2\\1&\pmb0&2\\5&\pmb1&0\end{vmatrix}=-2\kern 20pt|B_3|=\begin{vmatrix}2&6&\pmb0\\1&4&\pmb0\\5&9&\pmb1\end{vmatrix}=2
∣B1∣=
001649220
=4∣B2∣=
215001220
=−2∣B3∣=
215649001
=2这些就是第
3
3
3 行的代数余子式
C
31
,
C
32
,
C
33
C_{31},C_{32},C_{33}
C31,C32,C33,它们与第三行的点积是
det
A
=
2
\det A=2
detA=2:
det
A
=
a
31
C
31
+
a
32
C
32
+
a
33
C
33
=
(
5
,
9
,
0
)
⋅
(
4
,
−
2
,
2
)
=
2
\det A=a_{31}C_{31}+a_{32}C_{32}+a_{33}C_{33}=(5,9,0)\cdot(4,-2,2)=2
detA=a31C31+a32C32+a33C33=(5,9,0)⋅(4,−2,2)=2这三个比值
det
B
j
det
A
\displaystyle\frac{\det B_j}{\det A}
detAdetBj 得到解的三个分量
x
=
(
2
,
−
1
,
1
)
\boldsymbol x=(2,-1,1)
x=(2,−1,1),这个
x
\boldsymbol x
x 就是
A
−
1
A^{-1}
A−1 的第三列,因为
b
=
(
0
,
0
,
1
)
\boldsymbol b=(0,0,1)
b=(0,0,1) 是
I
I
I 的第三列。
沿着
A
A
A 其它行的代数余子式,除以
det
A
\det A
detA,得到
A
−
1
A^{-1}
A−1 的其它列:
A
−
1
=
C
T
det
A
=
1
2
[
−
18
18
4
10
−
10
−
2
−
11
12
2
]
.
验证
A
A
−
1
=
I
A^{-1}=\frac{C^T}{\det A}=\frac{1}{2}\begin{bmatrix}-18&\kern 7pt18&\kern 7pt4\\\kern 7pt10&-10&-2\\-11&\kern 7pt12&\kern 7pt2\end{bmatrix}.\kern 15pt验证\kern 5ptAA^{-1}=I
A−1=detACT=21
−1810−1118−10124−22
.验证AA−1=I边是
A
A
A 的列盒子的体积
=
det
A
=
2
=\det A=2
=detA=2,边是
A
A
A 的行的盒子的体积也是
2
2
2,因为
∣
A
T
∣
=
∣
A
∣
|A^{T}|=|A|
∣AT∣=∣A∣。边是
A
−
1
A^{-1}
A−1 行的盒子体积是
1
∣
A
∣
=
1
2
\displaystyle\frac{1}{|A|}=\frac{1}{2}
∣A∣1=21。