在行列可自由变换的条件下,平面上的5点结构只有34个
这次将5点结构通过结构加法化成2点结构5s1-4-3-2,并比较5s1-4-3-2的变化规律。
(A,B)---6*n*2---(0,1)(1,0)
分类A和B,A是34个5点结构,让B全是0。当收敛误差为7e-4,收敛199次取迭代次数平均值。让隐藏层节点数n分别为10,15,20,25,30,40,50,60,70,80,90,100.
得到5s1迭代次数为
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
5s1 | 5s1 | 5s1 | 5s1 | 5s1 | 5s1 | 5s1 | 5s1 | 5s1 | 5s1 | 5s1 | 5s1 | |
1 | 11752.5 | 6969.24 | 5171.6 | 4250.75 | 3741.75 | 3110.9 | 2737.68 | 2494.42 | 2320.1 | 2171.65 | 2061.85 | 1967.53 |
2 | 10566.7 | 6758.79 | 5168.69 | 4416.48 | 3931.85 | 3415.57 | 3062.91 | 2835.67 | 2676.73 | 2535.42 | 2430.2 | 2329.89 |
3 | 14906.1 | 8852.81 | 6619.89 | 5448.79 | 4698.19 | 3951.45 | 3460.45 | 3150.05 | 2936.68 | 2740.3 | 2593.16 | 2456.18 |
4 | 23692.9 | 15086.5 | 11699.5 | 9612.86 | 8242.31 | 6867.83 | 5913.36 | 5291.1 | 4814.67 | 4422.06 | 4110.45 | 3845.97 |
5 | 23454.8 | 15604.3 | 12320.2 | 10529 | 9316.83 | 7739.49 | 6890.3 | 6213.11 | 5753.51 | 5363.96 | 5029.29 | 4713.56 |
6 | 20657 | 15123.9 | 12235.8 | 10549.8 | 9595.52 | 8258.39 | 7432.46 | 6858.89 | 6432.51 | 6012.11 | 5720.25 | 5449.54 |
7 | 22418 | 15683.7 | 12720.7 | 11023.3 | 9881.85 | 8386.73 | 7522.56 | 6879.24 | 6389.84 | 6024.32 | 5668.74 | 5370.15 |
8 | 29629.4 | 20123.4 | 15633.9 | 13181.2 | 11477.2 | 9576.53 | 8379.19 | 7551.25 | 6860.8 | 6337.53 | 5905.72 | 5537.43 |
9 | 25507.5 | 18333.4 | 15032 | 13084 | 11842 | 10030.6 | 9058.94 | 8302.91 | 7712.71 | 7244.92 | 6799.54 | 6439.19 |
10 | 28095.2 | 20007.5 | 16233.9 | 13968.1 | 12293.9 | 10499.1 | 9361 | 8523.31 | 7844.42 | 7354.07 | 6886.88 | 6499.89 |
11 | 37753.5 | 24447.1 | 18595.8 | 15459.4 | 13314 | 10967.3 | 9479.08 | 8532.6 | 7873.35 | 7268.08 | 6807.87 | 6455.76 |
12 | 33973.6 | 23443.1 | 18502.9 | 15657.4 | 13784.5 | 11331.2 | 9903.66 | 8777.73 | 7949.59 | 7275.12 | 6672.11 | 6129.44 |
13 | 34927.7 | 25196.3 | 20519.8 | 17940.7 | 16289.3 | 14097.2 | 12723.3 | 11678.2 | 10978.9 | 10338.7 | 9797.63 | 9300.1 |
14 | 40440.8 | 29570.9 | 24546.4 | 21289.5 | 19031.8 | 16183 | 14432.5 | 13052 | 12069 | 11126.1 | 10313.3 | 9624.62 |
15 | 39256.1 | 29348.8 | 24815.5 | 21768.1 | 19999.1 | 17262 | 15481.7 | 14199.7 | 13113.2 | 12092.9 | 11281.8 | 10491.8 |
16 | 38015.7 | 29613.4 | 25316.7 | 22871.5 | 21272.8 | 19333 | 18134 | 17306.3 | 16691.7 | 16268.8 | 15870.5 | 15592.7 |
17 | 39778.9 | 31754.4 | 27449.8 | 24752.1 | 22932.3 | 20235.3 | 18354.4 | 16879.6 | 15712.6 | 14649.2 | 13684.4 | 12794.8 |
18 | 36727.1 | 29575.5 | 26405.1 | 24327.9 | 22838.3 | 21291.8 | 20240.2 | 19546.5 | 19082.4 | 18743.2 | 18493.4 | 18298.8 |
19 | 44737.6 | 33607.6 | 28234.2 | 25393.4 | 23604.2 | 21173.8 | 19710.9 | 18727.5 | 18031.6 | 17439.4 | 17032 | 16683.8 |
20 | 42951.9 | 33443.9 | 28765.5 | 26054.5 | 24190.2 | 21961.4 | 20701.4 | 19741.7 | 19092 | 18562.6 | 18145.2 | 17814.6 |
21 | 44582.4 | 35093.6 | 30148 | 27175.3 | 25271.9 | 22736.4 | 21026.2 | 19867.6 | 18914.9 | 18136.4 | 17475.3 | 16843.6 |
22 | 42349.1 | 34151.8 | 29750.7 | 27357.6 | 25362.7 | 22735.6 | 20881 | 19431 | 18223.8 | 17089.9 | 16113.4 | 15169.8 |
23 | 52088.3 | 38308.1 | 31908.8 | 28448.2 | 25830.9 | 23062.1 | 21266.2 | 20093 | 19211.1 | 18518.7 | 18004.6 | 17511.6 |
24 | 58378.1 | 41903.9 | 33806.8 | 29014.4 | 26148 | 22116.3 | 19529.3 | 17677.4 | 16257.7 | 15123 | 14125.4 | 13271 |
25 | 51651.5 | 39191.5 | 33302.9 | 29574.5 | 27140.3 | 24233.9 | 22473.4 | 21267.9 | 20296.7 | 19579.5 | 18994.3 | 18589.2 |
26 | 49458.5 | 38545.8 | 33701.1 | 30892 | 28920.3 | 26508.2 | 24894.5 | 23892.6 | 23142.6 | 22592.8 | 22139 | 21818.5 |
27 | 48064.3 | 38641.1 | 33982.1 | 31311.2 | 29236.7 | 26890.1 | 25414 | 24446.5 | 23677.9 | 23141.4 | 22687.5 | 22351.5 |
28 | 52522.3 | 40170.9 | 34878.9 | 31405 | 29119.6 | 26555.1 | 24772.5 | 23709.5 | 22797.9 | 22137.2 | 21630.5 | 21152.7 |
29 | 64112.5 | 47703.3 | 39989 | 35518.2 | 32283.4 | 28385.5 | 26009.6 | 24192.4 | 22978.6 | 22048.8 | 21148.9 | 20359.9 |
30 | 53629.9 | 43251.5 | 38388.5 | 35513.1 | 33423.1 | 30843.2 | 29354.5 | 28131.9 | 27348.6 | 26759.8 | 26206.9 | 25741.7 |
31 | 55516.6 | 44483 | 38853.5 | 35652.9 | 33575.9 | 30590 | 28929.4 | 27828.7 | 26869.3 | 26211.2 | 25618.8 | 25242 |
32 | 71618.9 | 56155.2 | 48531.9 | 43960.2 | 40765.7 | 36848.7 | 34547.2 | 33091.7 | 31907.9 | 31021.3 | 30338.6 | 29684.4 |
33 | 70513.6 | 58830.7 | 52471.4 | 49054 | 46256 | 43127.5 | 41105.3 | 39675.6 | 38520.3 | 37791.7 | 37155.9 | 36724.9 |
34 | 133175 | 98264 | 81516.4 | 72143.7 | 66022.4 | 57929.9 | 53439.6 | 50027.5 | 47763.8 | 45831.6 | 44325.8 | 43298.9 |
顺序
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
6 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
7 | 6 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 7 | 6 | 7 | 7 |
4 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 7 | 6 | 6 |
9 | 9 | 9 | 9 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
10 | 10 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 |
8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 9 | 9 |
12 | 12 | 12 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 11 | 11 |
13 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 10 | 10 | 10 |
18 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
11 | 15 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
16 | 14 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
15 | 18 | 16 | 16 | 16 | 16 | 16 | 17 | 17 | 17 | 17 | 17 |
17 | 16 | 18 | 18 | 18 | 17 | 17 | 16 | 24 | 24 | 24 | 24 |
14 | 17 | 17 | 17 | 17 | 19 | 24 | 24 | 16 | 16 | 16 | 22 |
22 | 20 | 19 | 19 | 19 | 18 | 19 | 19 | 19 | 22 | 22 | 16 |
20 | 19 | 20 | 20 | 20 | 20 | 18 | 22 | 22 | 19 | 19 | 19 |
21 | 22 | 22 | 21 | 21 | 24 | 20 | 18 | 21 | 21 | 21 | 21 |
19 | 21 | 21 | 22 | 22 | 22 | 22 | 20 | 18 | 23 | 23 | 23 |
27 | 23 | 23 | 23 | 23 | 21 | 21 | 21 | 20 | 20 | 20 | 20 |
26 | 26 | 25 | 24 | 24 | 23 | 23 | 23 | 23 | 18 | 18 | 18 |
25 | 27 | 26 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
23 | 25 | 24 | 26 | 26 | 26 | 28 | 28 | 28 | 29 | 29 | 29 |
28 | 28 | 27 | 27 | 28 | 28 | 26 | 26 | 29 | 28 | 28 | 28 |
30 | 24 | 28 | 28 | 27 | 27 | 27 | 29 | 26 | 26 | 26 | 26 |
31 | 30 | 30 | 30 | 29 | 29 | 29 | 27 | 27 | 27 | 27 | 27 |
24 | 31 | 31 | 29 | 30 | 31 | 31 | 31 | 31 | 31 | 31 | 31 |
29 | 29 | 29 | 31 | 31 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
33 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 |
32 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 |
34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 34 |
归一化
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 0.899 | 0.97 | 0.999 | 1.039 | 1.051 | 1.098 | 1.119 | 1.137 | 1.154 | 1.168 | 1.179 | 1.184 |
3 | 1.268 | 1.27 | 1.28 | 1.282 | 1.256 | 1.27 | 1.264 | 1.263 | 1.266 | 1.262 | 1.258 | 1.248 |
4 | 2.016 | 2.165 | 2.262 | 2.261 | 2.203 | 2.208 | 2.16 | 2.121 | 2.075 | 2.036 | 1.994 | 1.955 |
5 | 1.996 | 2.239 | 2.382 | 2.477 | 2.49 | 2.488 | 2.517 | 2.491 | 2.48 | 2.47 | 2.439 | 2.396 |
6 | 1.758 | 2.17 | 2.366 | 2.482 | 2.564 | 2.655 | 2.715 | 2.75 | 2.773 | 2.768 | 2.774 | 2.77 |
7 | 1.908 | 2.25 | 2.46 | 2.593 | 2.641 | 2.696 | 2.748 | 2.758 | 2.754 | 2.774 | 2.749 | 2.729 |
8 | 2.521 | 2.887 | 3.023 | 3.101 | 3.067 | 3.078 | 3.061 | 3.027 | 2.957 | 2.918 | 2.864 | 2.814 |
9 | 2.17 | 2.631 | 2.907 | 3.078 | 3.165 | 3.224 | 3.309 | 3.329 | 3.324 | 3.336 | 3.298 | 3.273 |
10 | 2.391 | 2.871 | 3.139 | 3.286 | 3.286 | 3.375 | 3.419 | 3.417 | 3.381 | 3.386 | 3.34 | 3.304 |
11 | 3.212 | 3.508 | 3.596 | 3.637 | 3.558 | 3.525 | 3.462 | 3.421 | 3.394 | 3.347 | 3.302 | 3.281 |
12 | 2.891 | 3.364 | 3.578 | 3.683 | 3.684 | 3.642 | 3.618 | 3.519 | 3.426 | 3.35 | 3.236 | 3.115 |
13 | 2.972 | 3.615 | 3.968 | 4.221 | 4.353 | 4.532 | 4.647 | 4.682 | 4.732 | 4.761 | 4.752 | 4.727 |
14 | 3.441 | 4.243 | 4.746 | 5.008 | 5.086 | 5.202 | 5.272 | 5.232 | 5.202 | 5.123 | 5.002 | 4.892 |
15 | 3.34 | 4.211 | 4.798 | 5.121 | 5.345 | 5.549 | 5.655 | 5.693 | 5.652 | 5.569 | 5.472 | 5.332 |
16 | 3.235 | 4.249 | 4.895 | 5.381 | 5.685 | 6.215 | 6.624 | 6.938 | 7.194 | 7.491 | 7.697 | 7.925 |
17 | 3.385 | 4.556 | 5.308 | 5.823 | 6.129 | 6.505 | 6.704 | 6.767 | 6.772 | 6.746 | 6.637 | 6.503 |
18 | 3.125 | 4.244 | 5.106 | 5.723 | 6.104 | 6.844 | 7.393 | 7.836 | 8.225 | 8.631 | 8.969 | 9.3 |
19 | 3.807 | 4.822 | 5.459 | 5.974 | 6.308 | 6.806 | 7.2 | 7.508 | 7.772 | 8.03 | 8.261 | 8.48 |
20 | 3.655 | 4.799 | 5.562 | 6.129 | 6.465 | 7.06 | 7.562 | 7.914 | 8.229 | 8.548 | 8.8 | 9.054 |
21 | 3.793 | 5.035 | 5.83 | 6.393 | 6.754 | 7.309 | 7.68 | 7.965 | 8.153 | 8.351 | 8.476 | 8.561 |
22 | 3.603 | 4.9 | 5.753 | 6.436 | 6.778 | 7.308 | 7.627 | 7.79 | 7.855 | 7.87 | 7.815 | 7.71 |
23 | 4.432 | 5.497 | 6.17 | 6.693 | 6.903 | 7.413 | 7.768 | 8.055 | 8.28 | 8.527 | 8.732 | 8.9 |
24 | 4.967 | 6.013 | 6.537 | 6.826 | 6.988 | 7.109 | 7.134 | 7.087 | 7.007 | 6.964 | 6.851 | 6.745 |
25 | 4.395 | 5.624 | 6.44 | 6.957 | 7.253 | 7.79 | 8.209 | 8.526 | 8.748 | 9.016 | 9.212 | 9.448 |
26 | 4.208 | 5.531 | 6.517 | 7.267 | 7.729 | 8.521 | 9.093 | 9.578 | 9.975 | 10.4 | 10.74 | 11.09 |
27 | 4.09 | 5.545 | 6.571 | 7.366 | 7.814 | 8.644 | 9.283 | 9.801 | 10.21 | 10.66 | 11 | 11.36 |
28 | 4.469 | 5.764 | 6.744 | 7.388 | 7.782 | 8.536 | 9.049 | 9.505 | 9.826 | 10.19 | 10.49 | 10.75 |
29 | 5.455 | 6.845 | 7.732 | 8.356 | 8.628 | 9.125 | 9.501 | 9.699 | 9.904 | 10.15 | 10.26 | 10.35 |
30 | 4.563 | 6.206 | 7.423 | 8.355 | 8.932 | 9.915 | 10.72 | 11.28 | 11.79 | 12.32 | 12.71 | 13.08 |
31 | 4.724 | 6.383 | 7.513 | 8.387 | 8.973 | 9.833 | 10.57 | 11.16 | 11.58 | 12.07 | 12.43 | 12.83 |
32 | 6.094 | 8.058 | 9.384 | 10.34 | 10.89 | 11.85 | 12.62 | 13.27 | 13.75 | 14.28 | 14.71 | 15.09 |
33 | 6 | 8.441 | 10.15 | 11.54 | 12.36 | 13.86 | 15.01 | 15.91 | 16.6 | 17.4 | 18.02 | 18.67 |
34 | 11.33 | 14.1 | 15.76 | 16.97 | 17.64 | 18.62 | 19.52 | 20.06 | 20.59 | 21.1 | 21.5 | 22.01 |
用结构加法
化简得到5s1-4的搜索难度
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | 5s1-4 | |
1 | 1.71 | 1.88 | 1.96 | 1.99 | 1.98 | 1.98 | 1.97 | 1.94 | 1.91 | 1.88 | 1.84 | 1.8 |
2 | 2.41 | 2.92 | 3.23 | 3.42 | 3.52 | 3.65 | 3.73 | 3.76 | 3.77 | 3.77 | 3.74 | 3.7 |
3 | 2.53 | 2.99 | 3.23 | 3.37 | 3.38 | 3.42 | 3.45 | 3.42 | 3.37 | 3.34 | 3.27 | 3.21 |
4 | 3.15 | 3.63 | 3.87 | 4.01 | 4.04 | 4.1 | 4.12 | 4.11 | 4.09 | 4.09 | 4.05 | 4.02 |
5 | 3.29 | 4.25 | 4.87 | 5.34 | 5.61 | 6.05 | 6.39 | 6.63 | 6.82 | 7.01 | 7.15 | 7.29 |
6 | 4.02 | 5.12 | 5.83 | 6.29 | 6.55 | 7.02 | 7.38 | 7.65 | 7.84 | 8.07 | 8.24 | 8.43 |
7 | 3.42 | 4.47 | 5.19 | 5.72 | 6.04 | 6.56 | 6.96 | 7.27 | 7.49 | 7.73 | 7.9 | 8.08 |
8 | 3.36 | 4.44 | 5.19 | 5.76 | 6.1 | 6.66 | 7.12 | 7.48 | 7.75 | 8.06 | 8.29 | 8.53 |
9 | 3.46 | 4.6 | 5.39 | 5.97 | 6.33 | 6.93 | 7.38 | 7.7 | 7.97 | 8.24 | 8.43 | 8.61 |
10 | 4.27 | 5.4 | 6.15 | 6.71 | 6.99 | 7.53 | 7.94 | 8.26 | 8.52 | 8.8 | 9.02 | 9.22 |
11 | 3.28 | 4.22 | 4.85 | 5.31 | 5.56 | 5.95 | 6.2 | 6.36 | 6.47 | 6.58 | 6.62 | 6.66 |
12 | 3.73 | 4.53 | 4.97 | 5.21 | 5.34 | 5.43 | 5.47 | 5.43 | 5.36 | 5.29 | 5.19 | 5.06 |
13 | 4.69 | 6.44 | 7.68 | 8.64 | 9.21 | 10.3 | 11.1 | 11.7 | 12.2 | 12.7 | 13.2 | 13.6 |
14 | 4.3 | 5.31 | 5.91 | 6.29 | 6.47 | 6.74 | 6.91 | 6.98 | 7.04 | 7.11 | 7.1 | 7.08 |
15 | 5.21 | 6.81 | 7.88 | 8.66 | 9.1 | 9.85 | 10.5 | 10.9 | 11.3 | 11.7 | 12 | 12.2 |
16 | 9.19 | 11.4 | 12.7 | 13.6 | 14.1 | 14.9 | 15.5 | 16 | 16.4 | 16.8 | 17.1 | 17.5 |
顺序
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
5 | 11 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
6 | 5 | 5 | 5 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
7 | 8 | 8 | 12 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 14 | 14 |
8 | 7 | 7 | 7 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | 5 | 5 |
9 | 9 | 12 | 8 | 8 | 8 | 8 | 7 | 7 | 7 | 7 | 7 | 7 |
10 | 12 | 9 | 9 | 9 | 9 | 14 | 8 | 8 | 8 | 8 | 6 | 6 |
11 | 6 | 6 | 6 | 14 | 14 | 9 | 9 | 6 | 6 | 6 | 8 | 8 |
12 | 10 | 14 | 14 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 |
13 | 14 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
14 | 13 | 13 | 13 | 13 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
15 | 15 | 15 | 15 | 15 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
归一化后画成图
由5s1-4化成5s1-4-3
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
1 | 3.13 | 3.74 | 4.08 | 4.28 | 4.35 | 4.45 | 4.5 | 4.49 | 4.46 | 4.44 | 4.39 | 4.32 |
2 | 3.65 | 4.62 | 5.24 | 5.65 | 5.87 | 6.26 | 6.56 | 6.77 | 6.93 | 7.11 | 7.23 | 7.37 |
3 | 3 | 3.84 | 4.39 | 4.79 | 5.02 | 5.39 | 5.67 | 5.87 | 6.02 | 6.19 | 6.29 | 6.4 |
4 | 4.09 | 5.22 | 5.96 | 6.49 | 6.78 | 7.27 | 7.63 | 7.89 | 8.1 | 8.32 | 8.47 | 8.6 |
5 | 3.88 | 5.2 | 6.12 | 6.82 | 7.23 | 7.97 | 8.52 | 8.94 | 9.27 | 9.63 | 9.9 | 10.2 |
6 | 7.36 | 9.08 | 10.1 | 10.9 | 11.2 | 11.8 | 12.4 | 12.7 | 13 | 13.3 | 13.6 | 13.8 |
顺序
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
4 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
由5s1-4-3化成5s1-4-3-2
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
1 | 3.42 | 4.29 | 4.84 | 5.2 | 5.39 | 5.72 | 5.97 | 6.14 | 6.25 | 6.39 | 6.47 | 6.57 |
2 | 3.62 | 4.68 | 5.39 | 5.91 | 6.21 | 6.71 | 7.08 | 7.36 | 7.57 | 7.79 | 7.95 | 8.11 |
3 | 5.86 | 7.24 | 8.07 | 8.66 | 8.97 | 9.45 | 9.85 | 10.1 | 10.3 | 10.6 | 10.7 | 10.9 |
12组顺序都是1,2,3,归一化
10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1.059 | 1.093 | 1.115 | 1.137 | 1.15 | 1.172 | 1.186 | 1.199 | 1.21 | 1.22 | 1.229 | 1.234 |
3 | 1.714 | 1.689 | 1.669 | 1.666 | 1.662 | 1.651 | 1.65 | 1.645 | 1.651 | 1.651 | 1.654 | 1.659 |
拟合两段折线
第一段
x | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
y | 0.0589 | 0.0925 | 0.1152 | 0.1366 | 0.1504 | 0.172 | 0.1865 | 0.1985 | 0.2098 | 0.2199 | 0.2286 | 0.2343 |
y=0.07573560738513244*ln(x)-0.11110652722164001
0.997666762 ****** 决定系数 r**2
第二段
x | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
y | 0.655 | 0.5966 | 0.554 | 0.5293 | 0.512 | 0.4793 | 0.4636 | 0.447 | 0.441 | 0.4314 | 0.4257 | 0.4244 |
y=0.9874888224508752*x**-0.1898645101447474
0.986896691 ****** 决定系数 r**2
所以网络的参数将决定5s1的顺序,如果把5点结构顺序的变化看作是一种离散运动,则显然是网络参数将决定网络外点的运动。