11. LCEL:LangChain Expression Language

news2024/11/17 9:37:44

这篇文章覆盖了LCEL的理解和他是如何工作的。

LCEL(LangChain Expression Language):是把一些有趣python概念抽象成一种格式,从而为构建LangChain组件链提供一种“简约”代码层。

LCEL在下面方面有着强大的支撑:

  1. 链的快速开发
  2. 流式输出、异步,以及并发执行等高阶特性
  3. 和LangSmith和LangServe的快速集成

在这篇文章中,我们将学习LCEL是什么、他是如何工作的,以及LCEL链、pipe和RUnnable的要点。

LCEL语法

我们首先安装本次演示所需的所有必备库。注意,也可以通过我们的Jupyter笔记来操作。

!pip install -qU \
    langchain==0.0.345 \
    anthropic==0.7.7 \
    cohere==4.37 \
    docarray==0.39.1

为了理解LCEL预发,我们首先构建一个简单的链使用LangChain的传统语法。我们将使用Claude 2.1初始化一个简单的LLMChain。

from langchain.chat_models import ChatAnthropic
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser

ANTHROPIC_API_KEY = "<<YOUR_ANTHROPIC_API_KEY>>"

prompt = ChatPromptTemplate.from_template(
    "Give me small report about {topic}"
)
model = ChatAnthropic(
    model="claude-2.1",
    max_tokens_to_sample=512,
    anthropic_api_key=ANTHROPIC_API_KEY
)  # swap Anthropic for OpenAI with `ChatOpenAI` and `openai_api_key`
output_parser = StrOutputParser()

通过使用这个链,我们可以通过在LLMChain上面调用chain.run方法来生成关于某个特定主题(如,“人工智能”)的小型报告。

from langchain.chains import LLMChain

chain = LLMChain(
    prompt=prompt,
    llm=model,
    output_parser=output_parser
)

# and run
out = chain.run(topic="Artificial Intelligence")
print(out)

Here is a brief report on some key aspects of artificial intelligence (AI):

Introduction
- AI refers to computer systems that are designed to perform tasks that would otherwise require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. 

Major AI Techniques
- Machine learning uses statistical techniques and neural networks to enable systems to improve at tasks with experience. Common techniques include deep learning, reinforcement learning, and supervised learning.
- Computer vision focuses on extracting information from digital images and videos. It powers facial recognition, self-driving vehicles, and other visual AI tasks.
- Natural language processing enables computers to understand, interpret, and generate human languages. Key applications include machine translation, search engines, and voice assistants like Siri.

Current Capabilities
- AI programs have matched or exceeded human capabilities in narrow or well-defined tasks like playing chess and Go, identifying objects in images, and transcribing speech. 
- However, general intelligence comparable to humans across different areas remains an unsolved challenge, often referred to as artificial general intelligence (AGI).

Future Directions
- Ongoing AI research is focused on developing stronger machine learning techniques, achievingexplainability and transparency in AI decision-making, and addressing potential ethical issues like bias.
- If achieved, AGI could have significant societal and economic impacts, potentially enhancing and automating intellectual work. However safety, control and alignment with human values remain active research priorities.

I hope this brief overview of some major aspects of the current state of AI technology and research provides useful context and information. Let me know if you would like me to elaborate on or clarify anything further.

通过LCEL,我们使用管道操作符(|)而不是Chains来以不同的方式创建链:

lcel_chain = prompt | model | output_parser

# and run
out = lcel_chain.invoke({"topic": "Artificial Intelligence"})
print(out)
Here is a brief report on artificial intelligence:

Artificial intelligence (AI) refers to computer systems that can perform human-like cognitive functions such as learning, reasoning, and self-correction. AI has advanced significantly in recent years due to increases in computing power and the availability of large datasets and open source machine learning libraries.

Some key highlights about the current state of AI:

- Applications of AI - AI is being utilized in a wide variety of industries including finance, healthcare, transportation, criminal justice, and social media platforms. Use cases include personalized recommendations, predictive analytics, automated customer service agents, medical diagnosis, self-driving vehicles, and content moderation.

- Machine Learning - The ability for AI systems to learn from data without explicit programming is driving much of the recent progress. Machine learning methods like deep learning neural networks have achieved new breakthroughs in areas like computer vision, speech recognition, and natural language processing. 

- Limitations - While AI has made great strides, current systems still have major limitations compared to human intelligence including lack of general world knowledge, difficulties dealing with novelty, bias issues from flawed datasets, and lack of skills for complex reasoning, empathy, creativity, etc. Ensuring the safety and controllability of AI systems remains an ongoing challenge.  

- Future Outlook - Experts predict key areas for AI advancement to include gaining contextual understanding and reasoning skills, achieving more human-like communication abilities, algorithmic fairness and transparency, as well as advances in specialized fields like robotics, autonomous vehicles, and human-AI collaboration. Careful management of risks posed by more advanced AI systems remains crucial. Global competition for AI talent and computing resources continues to intensify.

That covers some of the key trends, strengths and limitations, and future trajectories for artificial intelligence technology based on the current landscape. Please let me know if you would like me to elaborate on any part of this overview.

这里的语法对于Python来说并不典型,但只使用了原生Python的功能。我们的管道操作符(|)只是简单的获取左侧的输出,并将其输入到右侧的函数中。

管道操作符如何工作

为了理解LCEL和管道操作符正在发生什么情况,我们创建自己的兼容管道的函数。

当Python解释器看到两个对象之间的“|”操作符(如a|b)是,它将尝试将对象a传入对象b的__or__方法。这意味着这些模式是等效的:

# object approach
chain = a.__or__(b)
chain("some input")

# pipe approach
chain = a | b
chain("some input")

考虑到这一点,我们可以构建一个可运行(Runnable)类,这个类接收一个函数,并将它转换为一个可使用管道操作符(|)与其他函数进行链式调用的函数。

class Runnable:
    def __init__(self, func):
        self.func = func

    def __or__(self, other):
        def chained_func(*args, **kwargs):
            # the other func consumes the result of this func
            return other(self.func(*args, **kwargs))
        return Runnable(chained_func)

    def __call__(self, *args, **kwargs):
        return self.func(*args, **kwargs)

让我们来实现这个操作,取值为3,加5(返回8),然后乘以2--得到16.

def add_five(x):
    return x + 5

def multiply_by_two(x):
    return x * 2

# wrap the functions with Runnable
add_five = Runnable(add_five)
multiply_by_two = Runnable(multiply_by_two)

# run them using the object approach
chain = add_five.__or__(multiply_by_two)
chain(3)  # should return 16
16

直接使用__or__我们得到了正确的答案,让我们来尝试使用管道操作来将这些链接起来:

chain = add_five | multiply_by_two
chain(3)
16

通过任意一种方法,我们都会得到正确的响应,从本质上讲,这就是LCEL将组件链接在一起使用的管道逻辑。然而,这并非LCEL的全部,他还有更多内涵。

深入LCEL

现在我们已经了解了LCEL语法的底层逻辑,让我们在LangChain的语境中对其进行深入探究并了解一些为在使用LCEL时实现最大化的灵活性而提供的附加方法。

Runnables

在使用LCEL,我们可能会发现,当值在组件之间传递时,我们需要修改值的流向或者值本身--为此,我们使用可执行对象(runnable)。让我们首先初始化几个简单的向量存储组件。

from langchain.embeddings import CohereEmbeddings
from langchain.vectorstores import DocArrayInMemorySearch

COHERE_API_KEY = "<<COHERE_API_KEY>>"

embedding = CohereEmbeddings(
    model="embed-english-light-v3.0",
    cohere_api_key=COHERE_API_KEY
)

vecstore_a = DocArrayInMemorySearch.from_texts(
    ["half the info will be here", "James' birthday is the 7th December"],
    embedding=embedding
)
vecstore_b = DocArrayInMemorySearch.from_texts(
    ["and half here", "James was born in 1994"],
    embedding=embedding
)

我们初始化两个本地的向量存储,并将两个重要信息片段分开存储在这两个向量存储中。我们后面很快会明白为什么要这么做,现在我们仅仅需要其中之一。让我们尝试将一个问题通过vecstore_a传递给RAG流水线.

from langchain_core.runnables import (
    RunnableParallel,
    RunnablePassthrough
)

retriever_a = vecstore_a.as_retriever()
retriever_b = vecstore_b.as_retriever()

prompt_str = """Answer the question below using the context:

Context: {context}

Question: {question}

Answer: """
prompt = ChatPromptTemplate.from_template(prompt_str)

retrieval = RunnableParallel(
    {"context": retriever_a, "question": RunnablePassthrough()}
)

chain = retrieval | prompt | model | output_parser

我们在这里使用两个新的对象,RunnableParallelRunnablePasstrhroughRunnableParalle对象允许我们定义多个值和操作,并将他们全部并行运行。在这里,我们使用chain的输入调用retriever_a,然后通过“context”参数将retriever_a的结果传递给链中的下一个组件。

LCEL流使用RunnableParallel和RunnablePassthrough

RunnablePassthrough对象被用作一种“传递(直通)”机制,他接受当前组件(检索组件)的任何输入,并允许我们通过“question”键将他提供给组件。

out = chain.invoke("when was James born?")
print(out)
 Unfortunately I do not have enough context to definitively state when James was born. The only potentially relevant information is "James' birthday is the 7th December", but this does not specify the year he was born. To answer the question of when specifically James was born, I would need more details or context such as his current age or the year associated with his birthday.

使用这些信息,推理已经接近回答了问题,但是他没有足够的信息,它缺失我们存储在retriever_b的信息。幸运的是,我们可以使用RunnableParllel对象来实现多个并行信息流。

prompt_str = """Answer the question below using the context:

Context:
{context_a}
{context_b}

Question: {question}

Answer: """
prompt = ChatPromptTemplate.from_template(prompt_str)

retrieval = RunnableParallel(
    {
        "context_a": retriever_a, "context_b": retriever_b,
        "question": RunnablePassthrough()
    }
)

chain = retrieval | prompt | model | output_parser

在这里,我们通过context_acontext_b传递两组上下文到我们的prompt组件。通过这种方式,我们可以向LLM提供更多信息(尽管奇怪的是,该打语言模型并不能将这些信息联系起来进行综合分析)。

out = chain.invoke("when was James born?")
print(out)
Based on the context provided, James was born in 1994. This is stated in the second document with the page content "James was born in 1994". Therefore, the answer to the question "when was James born?" is 1994.

out = chain.invoke("what date exactly was James born?")
print(out)
Unfortunately, the given context does not provide definitive information to answer the question "what date exactly was James born?". The context includes:

- James' birthday is the 7th December (no year specified)
- James was born in 1994

While it states James was born in 1994, there is no additional detail provided about the exact date. The context only specifies that his birthday, referring to the day and month he was born, is December 7th. But without the specific year provided with his birthday, there is not enough information to determine the exact date he was born.

Since an exact date of James' birth is not able to be determined from the given context, I do not have enough information to provide an answer specifying his exact birth date. The context provides his year of birth but does not include the required detail about the day and month in order for me to state his complete exact date of birth.

使用这种方式,我们可以能够进行多个并行执行,并且相当容易得构建更复杂的链。

Runnable Lambdas

RunnableLambda是LangChain关于将Python函数转换为管道适配的函数的一种抽象,与我们在文章前面Runnable类相似。

from langchain_core.runnables import RunnableLambda

def add_five(x):
    return x + 5

def multiply_by_two(x):
    return x * 2

# wrap the functions with RunnableLambda
add_five = RunnableLambda(add_five)
multiply_by_two = RunnableLambda(multiply_by_two)

使用我们早前的add_fivemultiply_by_two函数来试一下。

chain = add_five | multiply_by_two

Runnable抽象不一样的是我们不能直接调用RunnableLambda来运行它,取而代之,我们需要调用chain.invoke:

chain.invoke(3)
16

跟之前一样,我们得到了相同的答案。自然地,我们可以使用这种方法把自定义函数插入到我们的链中。让我们尝试一个短一点的链,并看看我们可能想在哪里插入自定义函数:

prompt_str = "Tell me an short fact about {topic}"
prompt = ChatPromptTemplate.from_template(prompt_str)

chain = prompt | model | output_parser

我们多次运行这个链,看看他会返回什么类型的答案:

chain.invoke({"topic": "Artificial Intelligence"})
" Here's a short fact about artificial intelligence:\n\nAI systems can analyze huge amounts of data and detect patterns that humans may miss. For example, AI is helping doctors diagnose diseases earlier by processing medical images and spotting subtle signs that a human might not notice."
chain.invoke({"topic": "Artificial Intelligence"})
" Here's a short fact about artificial intelligence:\n\nAI systems are able to teach themselves over time. Through machine learning, algorithms can analyze large amounts of data and improve their own processes and decision making without needing to be manually updated by humans. This self-learning ability is a key attribute enabling AI progress."

返回的文本经常包含一个“Here's a short fact about ...\n\n”作为开头--让我们添加一个函数,按照两个连续的“\n\n”进行分割,并且仅返回事实本身。

def extract_fact(x):
    if "\n\n" in x:
        return "\n".join(x.split("\n\n")[1:])
    else:
        return x
    
get_fact = RunnableLambda(extract_fact)

chain = prompt | model | output_parser | get_fact

现在再次尝试调用我们的链:

chain.invoke({"topic": "Artificial Intelligence"})
'Most AI systems today are narrow AI, meaning they are focused on and trained for a specific task like computer vision, natural language processing or playing chess. General artificial intelligence that has human-level broad capabilities across many domains does not yet exist. AI has made tremendous progress in recent years thanks to advances in deep learning, big data and computing power, but still has limitations and scientists are working to make AI systems safer and more beneficial to humanity.'
chain.invoke({"topic": "Artificial Intelligence"})
'AI systems can analyze massive amounts of data and detect patterns that humans may miss. This ability to find insights in large datasets is one of the key strengths of AI and enables many practical applications like personalized recommendations, fraud detection, and medical diagnosis.'

使用这个get_fact函数,我们并没有得到格式化良好的响应。


这些涵盖了你开始使用LCEL进行构建所需的基本内容。有了它,我们可以轻松的组合链--LangChain团队目前的重点是进一步进行LCEL的开发和支持。

LCEL的优缺点各不相同。喜欢他的人往往关注其极简的代码风格、对流、并行操作和异步的支持,以及它与LangChain专注于将组件链接在一起的理念的良好整合。

有些人不喜欢LCEL。这些人通常支出,LangChain本来已经是一个非常抽象的库,LCEL是在它之上的又一层抽象,语法令人困惑,与Python的宗旨相悖,并且需要花费太多的精力去学习新的(不常见)的语法。

两种观点都是完全合理的,LCEL是一种非常不同的方法--既有明显的优点也有明显的缺点。无论如何,如果你愿意花一些时间学习这种语法,他可以让我们快速的进行开发,考虑到这一点,它是很值得学习的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2168180.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ 刷题 使用到的一些有用的容器和函数

优先队列 c优先队列priority_queue&#xff08;自定义比较函数&#xff09;_c优先队列自定义比较-CSDN博客 373. 查找和最小的 K 对数字 - 力扣&#xff08;LeetCode&#xff09; 官方题解&#xff1a; class Solution { public:vector<vector<int>> kSmallestP…

java 解析excel (本地资源)

在Java中解析Excel文件&#xff0c;可以使用Apache POI库。以下是一个简单的例子&#xff0c;展示如何使用Apache POI读取一个Excel文件&#xff08;假设为.xlsx格式&#xff09;的内容。 首先&#xff0c;确保你的项目中包含了Apache POI的依赖。如果你使用Maven&#xff0c;…

绝了,自从用了它,我每天能多摸鱼2小时!

大家好&#xff0c;我是可乐。 俗话说的好&#xff1a;“摸鱼一时爽&#xff0c;一直摸鱼一直爽”。 作为一个程序员&#xff0c;是否有过调试代码熬到深夜&#xff1f;是否有过找不到解决方案而挠秃头顶&#xff1f; 但现在你即将要解放了&#xff0c;用了这款工具——秘塔…

【PWN · HOO | HOF | Tcache pthread struct】[2024 · ByteCTF] ezheap

在学习了一段时间堆后&#xff0c;终于能较为从容、有思路地做题了 目录 前言 一、题目 二、总体思路 三、攻击过程调试 &#xff08;1&#xff09;House of Orange &#xff08;2&#xff09;House of Force tcache pthread struct attack 四、EXP 总结 前言 做完…

Maya没有Arnold材质球

MAYA 没有Arnold材质球_哔哩哔哩_bilibili

OJ在线评测系统 前端 完善题目提交服务 细讲异步前端请求与后端接口交互

题目提交服务完善 这则笔记是我们来梳理一下前后端逻辑 主要是我们的提交逻辑 先是看前端 按钮绑定的是这个异步请求 async 关键字表示这个函数内部会使用 await 来等待异步操作完成。 异步提交表单数据 const doSubmit async () > {// message.error("刷题机架构…

第二十九篇——用间篇:间谍的五种用法

目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么&#xff1f; 四、总结五、升华 一、背景介绍 间谍的用法&#xff0c;精准的说明了对应的边界&#xff1b;以及在什么场…

字节打印流字符打印流

打印流不能读&#xff0c;只能写 打印流 分类:打印流一般是指:PrintStream&#xff0c;PrintWriter两个类 特点1:打印流只操作文件目的地&#xff0c;不操作数据源 特点2:特有的写出方法可以实现&#xff0c;数据原样写出 特点3:特有的写出方法&#xff0c;可以实现自动刷新…

如何将二氧化碳“封”入海底?

什么&#xff1f;人类在收集空气&#xff1f;&#xff01;&#xff01; 收集的二氧化碳用来干什么&#xff1f;这活咋干&#xff1f; 近期了解到一则新闻&#xff1a; 不得不说人类的智慧真是令人感叹&#xff0c;我们确实在为地球的环保事业添砖加瓦&#xff0c;点点滴滴的努…

【前端必读】一、使用 Cursor 的基本功能全教程(使用与安装)

【前端必读】一、使用 Cursor 的基本功能全教程&#xff08;使用与安装&#xff09; 【前端必读】二、使用 Cursor 的基本功能全教程&#xff08;快捷键及其他功能&#xff09; 一、使用 Cursor 的基本功能教程&#xff08;使用与安装&#xff09; 这篇教程主要讲解了如何使用…

react的事件绑定

文章目录 基本示例使用箭头函数事件对象阻止默认行为绑定事件处理函数的上下文 在 React 中&#xff0c;事件绑定主要通过 JSX 属性来实现。事件处理函数被传递给相应的事件属性&#xff0c;例如 onClick、onChange 等。这些属性会被绑定到 HTML 元素上&#xff0c;并在事件发生…

shiro 在未登录时候获取 SecurityUtils.getSubject() 异常

一、错误描述 需求背景&#xff1a;新项目需要通过aop将请求日志打印出来&#xff0c;并且附上当前登录人的账号&#xff0c;系统认证使用 shiro 控制&#xff0c;想着直接通过 SecurityUtils.getSubject() 获取当前身份&#xff0c;但是很不幸的是&#xff0c;当用户没有登录…

低代码BPM业务流程:简化企业流程管理的利器

什么是低代码BPM&#xff1f; 低代码BPM结合了低代码开发平台与业务流程管理的理念&#xff0c;使企业能够以较少的编码工作&#xff0c;快速设计、实施和优化业务流程。低代码平台通常提供可视化的界面&#xff0c;用户可以通过拖放组件来构建应用&#xff0c;而无需深入掌握…

linux信号 | 学习信号三步走 | 全解析信号的产生方式

前言&#xff1a;本节内容是信号&#xff0c; 主要讲解的是信号的产生。信号的产生是我们学习信号的第二个阶段。 我们已经学习过第一个阶段——信号的概念与预备知识&#xff08;没有学过的友友可以查看我的前一篇文章&#xff09;。 以及我们还没有学习信号的第三个阶段——信…

【rust】 基于rust编写wasm,实现markdown转换为html文本

文章目录 背景转换预览核心代码前置依赖rustup换源cargo换源中科大 wasm-pack安装 背景 尝试用rust编写一款markdown转html的插件&#xff0c;通过wasm给html使用&#xff0c;不得不说体积挺小&#xff0c;约200K&#xff0c; 比go的wasm起步2MB看着舒服点。 不过go的配置和换…

Nginx基础详解3(nginx.conf核心代码讲解、常用命令解析、Nginx日志切割)

续Nginx基础详解2&#xff08;首页解析过程、进程模型、处理Web请求机制、nginx.conf语法结构&#xff09;-CSDN博客 目录 8.nginx.conf核心代码 8.1错误日志 8.1.1第一列&#xff1a; 8.1.2第二列&#xff1a; 8.1.3第三列&#xff1a; 8.2 #pid 8.3http模块&#xff…

Vue引入js脚本问题记录(附解决办法)

目录 一、需求 二、import引入问题记录 三、解决方式 一、需求 我想在我的Vue项目中引入jquery.js和bootstrap.js这种脚本文件&#xff0c;但发现不能单纯的import引入&#xff0c;问题如下。 二、import引入问题记录 我直接这么引入&#xff0c;发现控制台报错TypeError: …

语义分割评价指标——95% Hausdorff距离

回顾以下95% Hausdorff距离的概念&#xff0c;一张比较经典直观的图&#xff1a; 一、 最快理解 max(d_XY, d_YX):取X>Y距离 和 Y>X距离的最大值。 其中 X>Y max min x>y :X所有点都和Y集合计算最小的距离&#xff0c;得到的距离集合再取最大值。 同理 Y>X m…

汽修行业:融合员工培训、知识库管理系统与SOP

随着汽车技术的飞速发展和消费者需求的日益多样化&#xff0c;汽修行业面临着前所未有的挑战与机遇。为了提升服务质量、增强竞争力&#xff0c;汽修企业必须重视员工培训、知识管理和作业标准化。本文旨在探讨如何构建一套集成汽修员工培训、知识库管理与SOP&#xff08;标准作…

Leetcode - 周赛416

目录 一&#xff0c;3295. 举报垃圾信息 二&#xff0c;3296. 移山所需的最少秒数 三&#xff0c;3297. 统计重新排列后包含另一个字符串的子字符串数目 I 四&#xff0c;3298. 统计重新排列后包含另一个字符串的子字符串数目 II 一&#xff0c;3295. 举报垃圾信息 本题就是…