Spring Boot集成Milvus快速入门demo

news2025/1/16 16:07:55

1.什么是Milvus?

Milvus 是一种高性能、高扩展性的向量数据库,可在从笔记本电脑到大型分布式系统等各种环境中高效运行。它既可以开源软件的形式提供,也可以云服务的形式提供。 Milvus 是 LF AI & Data Foundation 下的一个开源项目,以 Apache 2.0 许可发布。大多数贡献者都是高性能计算(HPC)领域的专家,擅长构建大型系统和优化硬件感知代码。核心贡献者包括来自 Zilliz、ARM、NVIDIA、AMD、英特尔、Meta、IBM、Salesforce、阿里巴巴和微软的专业人士

是什么让 Milvus 具有如此高的可扩展性

2022 年,Milvus 支持十亿级向量,2023 年,它以持续稳定的方式扩展到数百亿级,为 300 多家大型企业的大规模场景提供支持,包括 Salesforce、PayPal、Shopee、Airbnb、eBay、NVIDIA、IBM、AT&T、LINE、ROBLOX、Inflection 等。 Milvus 的云原生和高度解耦的系统架构确保了系统可以随着数据的增长而不断扩展:

highly-decoupled-architecture

  Milvus 本身是完全无状态的,因此可以借助 Kubernetes 或公共云轻松扩展。此外,Milvus 的各个组件都有很好的解耦,其中最关键的三项任务--搜索、数据插入和索引/压实--被设计为易于并行化的流程,复杂的逻辑被分离出来。这确保了相应的查询节点、数据节点和索引节点可以独立地向上和向下扩展,从而优化了性能和成本效率。

Milvus 支持的搜索类型

Milvus 支持各种类型的搜索功能,以满足不同用例的需求:

  • ANN 搜索:查找最接近查询向量的前 K 个向量。
  • 过滤搜索:在指定的过滤条件下执行 ANN 搜索。
  • 范围搜索:查找查询向量指定半径范围内的向量。
  • 混合搜索:基于多个向量场进行 ANN 搜索。
  • 关键词搜索基于 BM25 的关键词搜索。
  • 重新排序根据附加标准或辅助算法调整搜索结果的顺序,完善最初的 ANN 搜索结果。
  • 获取:根据主键检索数据。
  • 查询使用特定表达式检索数据。

2.测试环境搭建

  • First, we’ll need an instance of Milvus DB. The easiest and quickest way is to get a fully managed free Milvus DB instance provided by Zilliz Cloud: Vector Database built for enterprise-grade AI applications - Zilliz
  • For this, we’ll need to register for a Zilliz cloud account and follow the documentation for creating a free DB cluster.

milvus

3.代码工程

实验目的

实现对Milvus向量数据库的的crud

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>3.2.1</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>Milvus</artifactId>

    <properties>
        <maven.compiler.source>17</maven.compiler.source>
        <maven.compiler.target>17</maven.compiler.target>
    </properties>
    <dependencies>


        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-autoconfigure</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>io.milvus</groupId>
            <artifactId>milvus-sdk-java</artifactId>
            <version>2.4.1</version>
        </dependency>

    </dependencies>

    <build>
        <pluginManagement>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.8.1</version>
                    <configuration>
                        <fork>true</fork>
                        <failOnError>false</failOnError>
                    </configuration>
                </plugin>

                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-surefire-plugin</artifactId>
                    <version>2.22.2</version>
                    <configuration>
                        <forkCount>0</forkCount>
                        <failIfNoTests>false</failIfNoTests>
                    </configuration>
                </plugin>
            </plugins>
        </pluginManagement>
    </build>
</project>

controller

package com.et.controller;

import com.et.service.HelloZillizVectorDBService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.HashMap;
import java.util.Map;

@RestController
public class HelloWorldController {
   @Autowired
   HelloZillizVectorDBService helloZillizVectorDBService;
    @RequestMapping("/hello")
    public Map<String, Object> showHelloWorld(){
        Map<String, Object> map = new HashMap<>();
      helloZillizVectorDBService.search();
        map.put("msg", "HelloWorld");
        return map;
    }
}

service

package com.et.service;


import io.milvus.client.MilvusServiceClient;
import io.milvus.grpc.DataType;
import io.milvus.grpc.DescribeCollectionResponse;
import io.milvus.grpc.MutationResult;
import io.milvus.grpc.SearchResults;
import io.milvus.param.*;
import io.milvus.param.collection.*;
import io.milvus.param.dml.InsertParam;
import io.milvus.param.dml.SearchParam;
import io.milvus.param.index.CreateIndexParam;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;

import java.util.*;

@Service
public class HelloZillizVectorDBService {
   @Value("${uri}")
   public String uri;
   @Value("${token}")
   public String token;

    public  void search() {
        // connect to milvus
        final MilvusServiceClient milvusClient = new MilvusServiceClient(
                ConnectParam.newBuilder()
                        .withUri(uri)
                        .withToken(token)
                        .build());
        System.out.println("Connecting to DB: " + uri);
        // Check if the collection exists
        String collectionName = "book";
        R<DescribeCollectionResponse> responseR =
                milvusClient.describeCollection(DescribeCollectionParam.newBuilder().withCollectionName(collectionName).build());
        if (responseR.getData() != null) {
            milvusClient.dropCollection(DropCollectionParam.newBuilder().withCollectionName(collectionName).build());
        }
        System.out.println("Success!");
        // create a collection with customized primary field: book_id_field
        int dim = 64;
        FieldType bookIdField = FieldType.newBuilder()
                .withName("book_id")
                .withDataType(DataType.Int64)
                .withPrimaryKey(true)
                .withAutoID(false)
                .build();
        FieldType wordCountField = FieldType.newBuilder()
                .withName("word_count")
                .withDataType(DataType.Int64)
                .build();
        FieldType bookIntroField = FieldType.newBuilder()
                .withName("book_intro")
                .withDataType(DataType.FloatVector)
                .withDimension(dim)
                .build();
        CreateCollectionParam createCollectionParam = CreateCollectionParam.newBuilder()
                .withCollectionName(collectionName)
                .withDescription("my first collection")
                .withShardsNum(2)
                .addFieldType(bookIdField)
                .addFieldType(wordCountField)
                .addFieldType(bookIntroField)
                .build();
        System.out.println("Creating example collection: " + collectionName);
        System.out.println("Schema: " + createCollectionParam);
        milvusClient.createCollection(createCollectionParam);
        System.out.println("Success!");

        //insert data with customized ids
        Random ran = new Random();
        int singleNum = 1000;
        int insertRounds = 2;
        long insertTotalTime = 0L;
        System.out.println("Inserting " + singleNum * insertRounds + " entities... ");
        for (int r = 0; r < insertRounds; r++) {
            List<Long> book_id_array = new ArrayList<>();
            List<Long> word_count_array = new ArrayList<>();
            List<List<Float>> book_intro_array = new ArrayList<>();
            for (long i = r * singleNum; i < (r + 1) * singleNum; ++i) {
                book_id_array.add(i);
                word_count_array.add(i + 10000);
                List<Float> vector = new ArrayList<>();
                for (int k = 0; k < dim; ++k) {
                    vector.add(ran.nextFloat());
                }
                book_intro_array.add(vector);
            }
            List<InsertParam.Field> fields = new ArrayList<>();
            fields.add(new InsertParam.Field(bookIdField.getName(), book_id_array));
            fields.add(new InsertParam.Field(wordCountField.getName(), word_count_array));
            fields.add(new InsertParam.Field(bookIntroField.getName(), book_intro_array));
            InsertParam insertParam = InsertParam.newBuilder()
                    .withCollectionName(collectionName)
                    .withFields(fields)
                    .build();
            long startTime = System.currentTimeMillis();
            R<MutationResult> insertR = milvusClient.insert(insertParam);
            long endTime = System.currentTimeMillis();
            insertTotalTime += (endTime - startTime) / 1000.00;
        }
        System.out.println("Succeed in " + insertTotalTime + " seconds!");
        // flush data
        System.out.println("Flushing...");
        long startFlushTime = System.currentTimeMillis();
        milvusClient.flush(FlushParam.newBuilder()
                .withCollectionNames(Collections.singletonList(collectionName))
                .withSyncFlush(true)
                .withSyncFlushWaitingInterval(50L)
                .withSyncFlushWaitingTimeout(30L)
                .build());
        long endFlushTime = System.currentTimeMillis();
        System.out.println("Succeed in " + (endFlushTime - startFlushTime) / 1000.00 + " seconds!");

        // build index
        System.out.println("Building AutoIndex...");
        final IndexType INDEX_TYPE = IndexType.AUTOINDEX;   // IndexType
        long startIndexTime = System.currentTimeMillis();
        R<RpcStatus> indexR = milvusClient.createIndex(
                CreateIndexParam.newBuilder()
                        .withCollectionName(collectionName)
                        .withFieldName(bookIntroField.getName())
                        .withIndexType(INDEX_TYPE)
                        .withMetricType(MetricType.L2)
                        .withSyncMode(Boolean.TRUE)
                        .withSyncWaitingInterval(500L)
                        .withSyncWaitingTimeout(30L)
                        .build());
        long endIndexTime = System.currentTimeMillis();
        System.out.println("Succeed in " + (endIndexTime - startIndexTime) / 1000.00 + " seconds!");

        // load collection
        System.out.println("Loading collection...");
        long startLoadTime = System.currentTimeMillis();
        milvusClient.loadCollection(LoadCollectionParam.newBuilder()
                .withCollectionName(collectionName)
                .withSyncLoad(true)
                .withSyncLoadWaitingInterval(500L)
                .withSyncLoadWaitingTimeout(100L)
                .build());
        long endLoadTime = System.currentTimeMillis();
        System.out.println("Succeed in " + (endLoadTime - startLoadTime) / 1000.00 + " seconds");

        // search
        final Integer SEARCH_K = 2;                       // TopK
        final String SEARCH_PARAM = "{\"nprobe\":10}";    // Params
        List<String> search_output_fields = Arrays.asList("book_id", "word_count");
        for (int i = 0; i < 10; i++) {
            List<Float> floatList = new ArrayList<>();
            for (int k = 0; k < dim; ++k) {
                floatList.add(ran.nextFloat());
            }
            List<List<Float>> search_vectors = Collections.singletonList(floatList);
            SearchParam searchParam = SearchParam.newBuilder()
                    .withCollectionName(collectionName)
                    .withMetricType(MetricType.L2)
                    .withOutFields(search_output_fields)
                    .withTopK(SEARCH_K)
                    .withVectors(search_vectors)
                    .withVectorFieldName(bookIntroField.getName())
                    .withParams(SEARCH_PARAM)
                    .build();
            long startSearchTime = System.currentTimeMillis();
            R<SearchResults> search = milvusClient.search(searchParam);
            long endSearchTime = System.currentTimeMillis();
            System.out.println("Searching vector: " + search_vectors);
            System.out.println("Result: " + search.getData().getResults().getFieldsDataList());
            System.out.println("search " + i + " latency: " + (endSearchTime - startSearchTime) / 1000.00 + " seconds");
        }

        milvusClient.close();
    }

}

application.yaml

用实际的值替换下面的参数

uri = https://in01-XXXXXXXXXXXXX.aws-us-west-2.vectordb.zillizcloud.com:XXXXX
token = db_admin:password (or ApiKey)

只是一些关键代码,所有代码请参见下面代码仓库

代码仓库

  • GitHub - Harries/springboot-demo: a simple springboot demo with some components for example: redis,solr,rockmq and so on.(Milvus)

4.测试

启动Spring Boot应用,访问http://127.0.0.1:8080/hello,查看控制台输出日志

 Connecting to DB: https://in03-258dd5ae260ce1b.serverless.gcp-us-west1.cloud.zilliz.com
2024-09-25T21:29:30.636+08:00 ERROR 52861 --- [nio-8080-exec-2] i.m.client.AbstractMilvusGrpcClient : DescribeCollectionRequest collectionName:book failed, error code: 100, reason: can't find collection[database=db_258dd5ae260ce1b][collection=book]
2024-09-25T21:29:30.641+08:00 ERROR 52861 --- [nio-8080-exec-2] i.m.client.AbstractMilvusGrpcClient : DescribeCollectionRequest collectionName:book failed! Exception:{}

io.milvus.exception.ServerException: can't find collection[database=db_258dd5ae260ce1b][collection=book]
 at io.milvus.client.AbstractMilvusGrpcClient.handleResponse(AbstractMilvusGrpcClient.java:347) ~[milvus-sdk-java-2.3.4.jar:na]
 at io.milvus.client.AbstractMilvusGrpcClient.describeCollection(AbstractMilvusGrpcClient.java:655) ~[milvus-sdk-java-2.3.4.jar:na]
 at io.milvus.client.MilvusServiceClient.lambda$describeCollection$9(MilvusServiceClient.java:402) ~[milvus-sdk-java-2.3.4.jar:na]
 at io.milvus.client.MilvusServiceClient.retry(MilvusServiceClient.java:285) ~[milvus-sdk-java-2.3.4.jar:na]
 at io.milvus.client.MilvusServiceClient.describeCollection(MilvusServiceClient.java:402) ~[milvus-sdk-java-2.3.4.jar:na]
 at com.et.service.HelloZillizVectorDBService.search(HelloZillizVectorDBService.java:37) ~[classes/:na]
 at com.et.controller.HelloWorldController.showHelloWorld(HelloWorldController.java:18) ~[classes/:na]
 at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[na:na]
 at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:77) ~[na:na]
 at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[na:na]
 at java.base/java.lang.reflect.Method.invoke(Method.java:568) ~[na:na]
 at org.springframework.web.method.support.InvocableHandlerMethod.doInvoke(InvocableHandlerMethod.java:262) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:190) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:118) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.invokeHandlerMethod(RequestMappingHandlerAdapter.java:917) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.handleInternal(RequestMappingHandlerAdapter.java:829) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.mvc.method.AbstractHandlerMethodAdapter.handle(AbstractHandlerMethodAdapter.java:87) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:1089) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:979) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:1014) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at org.springframework.web.servlet.FrameworkServlet.doGet(FrameworkServlet.java:903) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at jakarta.servlet.http.HttpServlet.service(HttpServlet.java:564) ~[tomcat-embed-core-10.1.17.jar:6.0]
 at org.springframework.web.servlet.FrameworkServlet.service(FrameworkServlet.java:885) ~[spring-webmvc-6.1.2.jar:6.1.2]
 at jakarta.servlet.http.HttpServlet.service(HttpServlet.java:658) ~[tomcat-embed-core-10.1.17.jar:6.0]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:205) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:51) ~[tomcat-embed-websocket-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:174) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.springframework.web.filter.RequestContextFilter.doFilterInternal(RequestContextFilter.java:100) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.1.2.jar:6.1.2]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:174) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.springframework.web.filter.FormContentFilter.doFilterInternal(FormContentFilter.java:93) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.1.2.jar:6.1.2]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:174) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:201) ~[spring-web-6.1.2.jar:6.1.2]
 at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.1.2.jar:6.1.2]
 at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:174) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:149) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:167) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:90) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:482) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:115) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:93) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:74) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:340) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:391) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:63) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:896) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1744) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:52) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.threads.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1191) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.threads.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:659) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) ~[tomcat-embed-core-10.1.17.jar:10.1.17]
 at java.base/java.lang.Thread.run(Thread.java:840) ~[na:na]

Success!
Creating example collection: book
Schema: CreateCollectionParam(collectionName=book, shardsNum=2, description=my first collection, fieldTypes=[FieldType{name='book_id', type='Int64', elementType='None', primaryKey=true, partitionKey=false, autoID=false, params={}}, FieldType{name='word_count', type='Int64', elementType='None', primaryKey=false, partitionKey=false, autoID=false, params={}}, FieldType{name='book_intro', type='FloatVector', elementType='None', primaryKey=false, partitionKey=false, autoID=false, params={dim=64}}], partitionsNum=0, consistencyLevel=BOUNDED, databaseName=null, enableDynamicField=false)
Success!
Inserting 2000 entities... 
Succeed in 1 seconds!
Flushing...
Succeed in 3.019 seconds!
Building AutoIndex...
Succeed in 3.092 seconds!
Loading collection...
Succeed in 1.915 seconds
Searching vector: [[0.9944244, 0.693386, 0.23255765, 0.25712538, 0.8882742, 0.31521088, 0.10415316, 0.63687223, 0.23532659, 0.9057376, 0.23146588, 0.7598192, 0.18651527, 0.22246557, 0.71210265, 0.9853572, 0.7285811, 0.49920946, 0.5757665, 0.9907576, 0.6746712, 0.53398585, 0.3538667, 0.90167266, 0.09474373, 0.24573046, 0.19975495, 0.9486663, 0.38426965, 0.94270027, 0.0389961, 0.3591758, 0.092348695, 0.35975152, 0.0286901, 0.39673442, 0.59137595, 0.9894001, 0.7167906, 0.92300236, 0.95593584, 0.041143477, 0.26055408, 0.37320316, 0.64292294, 0.9690605, 0.8847745, 0.78260505, 0.92037845, 0.3789205, 0.13551015, 0.30201513, 0.49969083, 0.9982949, 0.066904426, 0.2057795, 0.58327323, 0.5174314, 0.14389539, 0.5790425, 0.9743603, 0.50154245, 0.6616634, 0.91518396]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1901
 data: 420
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11901
 data: 10420
 }
}
field_id: 101
]
search 0 latency: 0.884 seconds
Searching vector: [[0.012040913, 0.26888567, 0.8862797, 0.6432027, 0.72606975, 0.9214382, 0.8760127, 0.91277415, 0.6635162, 0.41956168, 0.21806747, 0.7068079, 0.562168, 0.28791857, 0.33324522, 0.83323824, 0.25118947, 0.8217658, 0.8863152, 0.5157847, 0.49335915, 0.39096528, 0.47110444, 0.9944315, 0.66889536, 0.98959273, 0.59788084, 0.7379387, 0.2901945, 0.6934935, 0.031101823, 0.93097365, 0.9596271, 0.32376093, 0.34571892, 0.8362285, 0.99687576, 0.7937399, 0.78078747, 0.34658694, 0.10428548, 0.2792738, 0.8640791, 0.57405174, 0.9725894, 0.20060968, 0.10779828, 0.101415455, 0.09755844, 0.7593852, 0.28356135, 0.6208364, 0.55110157, 0.42079234, 0.27782845, 0.06248188, 0.37675542, 0.7703235, 0.41342628, 0.07876682, 0.3361001, 0.8730568, 0.9582374, 0.38860106]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 118
 data: 776
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 10118
 data: 10776
 }
}
field_id: 101
]
search 1 latency: 0.193 seconds
Searching vector: [[0.17430764, 0.9034548, 0.59125566, 0.13526762, 0.48277777, 0.9429901, 0.07483035, 0.09548402, 0.7757748, 0.5250427, 0.70900095, 0.46090156, 0.055408716, 0.5705429, 0.19141757, 0.5524303, 0.9825838, 0.6484894, 0.84965557, 0.41863292, 0.69617915, 0.123098195, 0.3800782, 0.8989199, 0.30235797, 0.33991778, 0.9502303, 0.6279421, 0.3922888, 0.94838214, 0.98462456, 0.23758143, 0.5195748, 0.16518217, 0.044407308, 0.9360681, 0.086349785, 0.9243839, 0.7705846, 0.85942554, 0.33542854, 0.6248715, 0.9321932, 0.3886962, 0.23936534, 0.5275571, 0.7020884, 0.68789816, 0.70815116, 0.7435949, 0.5740872, 0.36369282, 0.22608125, 0.42592448, 0.9893665, 0.59022135, 0.37368262, 0.9808166, 0.113725126, 0.63403445, 0.6192569, 0.3703097, 0.11013746, 0.19765383]]
Result: [type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11983
 data: 10315
 }
}
field_id: 101
, type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1983
 data: 315
 }
}
field_id: 100
]
search 2 latency: 0.21 seconds
Searching vector: [[0.78146076, 0.4127342, 0.19565648, 0.7598609, 0.0024149418, 0.20477176, 0.2239834, 0.40071744, 0.34123564, 0.69816893, 0.16385543, 0.8746263, 0.93988293, 0.14641893, 0.77087975, 0.74109954, 0.44419652, 0.686166, 0.8017639, 0.62660855, 0.12844962, 0.09513128, 0.0733701, 0.50885594, 0.19533062, 0.6489767, 0.5061082, 0.76457673, 0.556717, 0.62532073, 0.44644332, 0.47170228, 0.17381704, 0.031323075, 0.1744278, 0.61520636, 0.7062351, 0.48471195, 0.659993, 0.8125965, 0.8243918, 0.2953208, 0.6301986, 0.48987025, 0.44276655, 0.87922597, 0.59580773, 0.03247899, 0.2750023, 0.91016316, 0.109629214, 0.8797219, 0.26653385, 0.55840206, 0.5943634, 0.28695053, 0.4747029, 0.7866449, 0.19065481, 0.15052843, 0.017061412, 0.73239404, 0.29625612, 0.86883324]]
Result: [type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11674
 data: 11420
 }
}
field_id: 101
, type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1674
 data: 1420
 }
}
field_id: 100
]
search 3 latency: 0.234 seconds
Searching vector: [[0.5506256, 0.4888333, 0.55734605, 0.33249807, 0.9612315, 0.14942867, 0.74893725, 0.32297194, 0.19399291, 0.3686679, 0.16189837, 0.51538646, 0.4324317, 0.24171656, 0.17148066, 0.98530066, 0.70252293, 0.36399698, 0.67156136, 0.30545527, 0.8341777, 0.10815537, 0.04843366, 0.5751087, 0.030209243, 0.5765392, 0.56931233, 0.7783963, 0.87335634, 0.24376905, 0.15837216, 0.8376091, 0.8253407, 0.90347946, 0.91477525, 0.3711217, 0.34623754, 0.3486765, 0.7336032, 0.1333232, 0.9737603, 0.9348897, 0.56583005, 0.19536161, 0.66466415, 0.25348592, 0.1945247, 0.30146033, 0.6067432, 0.0488891, 0.61155295, 0.32729924, 0.58033705, 0.9833621, 0.805477, 0.0863865, 0.88150877, 0.13743609, 0.8735751, 0.730011, 0.2418676, 0.24961507, 0.15848696, 0.90943843]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 632
 data: 71
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 10632
 data: 10071
 }
}
field_id: 101
]
search 4 latency: 0.246 seconds
Searching vector: [[0.097262084, 0.67786944, 0.5956394, 0.599271, 0.80228144, 0.20551127, 0.60712826, 0.7927536, 0.8707964, 0.92879516, 0.8600838, 0.088315904, 0.28391147, 0.13210869, 0.6447914, 0.79745305, 0.1630668, 0.87363887, 0.8451723, 0.56345624, 0.30312908, 0.8302696, 0.7499766, 0.42542475, 0.9217818, 0.16116339, 0.76864123, 0.7699597, 0.55911744, 0.88660645, 0.4057927, 0.05212158, 0.9849399, 0.6994747, 0.25052422, 0.5464197, 0.6989017, 0.6539669, 0.8416681, 0.60720086, 0.67637247, 0.74851876, 0.87226254, 0.015863419, 0.2851053, 0.741167, 0.5423461, 0.4004978, 0.21673638, 0.32579643, 0.90930575, 0.5031407, 0.11341238, 0.042031705, 0.72256076, 0.20273715, 0.67203254, 0.49100053, 0.5708503, 0.78067535, 0.053472757, 0.8504045, 0.77535784, 0.43355346]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1240
 data: 1074
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11240
 data: 11074
 }
}
field_id: 101
]
search 5 latency: 0.233 seconds
Searching vector: [[0.6666099, 0.60750645, 0.5930602, 0.62844944, 0.91999257, 0.40563875, 0.16784662, 0.58380336, 0.49874693, 0.9921237, 0.70105964, 0.109129846, 0.62001497, 0.29218578, 0.38023782, 0.80481774, 0.61428535, 0.45924222, 0.2801816, 0.40553528, 0.9678988, 0.4772452, 0.26234365, 0.934155, 0.6174237, 0.14148414, 0.5784021, 0.54518217, 0.11126441, 0.41204536, 0.61628705, 0.09558219, 0.12766111, 0.6261982, 0.899587, 0.8454346, 0.46918148, 0.5451731, 0.904986, 0.41042298, 0.82801545, 0.8856106, 0.5411191, 0.45282567, 0.448133, 0.8004736, 0.73305, 0.28807688, 0.99202037, 0.69817233, 0.67967457, 0.9214035, 0.97179586, 0.05739242, 0.15004623, 0.2254278, 0.6256416, 0.25962013, 0.015357256, 0.37749702, 0.037437856, 0.43823433, 0.88566333, 0.03802377]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 840
 data: 758
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 10840
 data: 10758
 }
}
field_id: 101
]
search 6 latency: 0.204 seconds
Searching vector: [[0.11513382, 0.46449423, 0.74709874, 0.45208257, 0.09473729, 0.254663, 0.34211916, 0.9703239, 0.93299186, 0.9023329, 0.3711759, 0.8269761, 0.032090902, 0.7948698, 0.5412331, 0.18797356, 0.52153504, 0.9574906, 0.86989266, 0.9373586, 0.95098126, 0.74318993, 0.25189924, 0.7419808, 0.94729316, 0.5275025, 0.08891839, 0.100687325, 0.71073514, 0.915546, 0.20827055, 0.21283334, 0.29924893, 0.7821449, 0.4894712, 0.10083097, 0.43401027, 0.16695005, 0.6697829, 0.8920079, 0.09012061, 0.073818564, 0.005478561, 0.046307027, 0.77760696, 0.7813985, 0.57121813, 0.53898925, 0.112255454, 0.57960665, 0.43604386, 0.14278823, 0.79370797, 0.38984406, 0.16432655, 0.46382785, 0.29833382, 0.50633746, 0.6599931, 0.87258536, 0.6334079, 0.47853124, 0.3620978, 0.9284326]]
Result: [type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11609
 data: 10760
 }
}
field_id: 101
, type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1609
 data: 760
 }
}
field_id: 100
]
search 7 latency: 0.201 seconds
Searching vector: [[0.14196914, 0.72220755, 0.97196966, 0.95760065, 0.17740268, 0.84783286, 0.96259207, 0.6342059, 0.14442027, 0.49199748, 0.008492172, 0.397287, 0.9179648, 0.960828, 0.5513112, 0.36929417, 0.5710163, 0.5876399, 0.05758536, 0.8194362, 0.061840713, 0.98121184, 0.1594106, 0.72564113, 0.52452654, 0.42187476, 0.027037859, 0.3591584, 0.8754618, 0.4417299, 0.68962467, 0.16419351, 0.9725907, 0.0099541545, 0.98403805, 0.29020512, 0.7518712, 0.9071815, 0.71259576, 0.6060254, 0.90245855, 0.502836, 0.97288334, 0.67282623, 0.34302354, 0.7001372, 0.48336947, 0.15780938, 0.21866882, 0.7550309, 0.7676532, 0.35363984, 0.37162405, 0.74286896, 0.9311386, 0.5419771, 0.34793264, 0.8912447, 0.32318318, 0.75553536, 0.41343224, 0.8355903, 0.93488806, 0.29507792]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 443
 data: 1132
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 10443
 data: 11132
 }
}
field_id: 101
]
search 8 latency: 0.227 seconds
Searching vector: [[0.77036685, 0.11818504, 0.9503699, 0.029416382, 0.02396065, 0.23895812, 0.41341382, 0.82225484, 0.8573582, 0.09137666, 0.6607858, 0.3046307, 0.07275897, 0.25788748, 0.6302589, 0.95142424, 0.46371943, 0.99155724, 0.7007737, 0.9712237, 0.043981254, 0.6340834, 0.6424302, 0.7176585, 0.6954333, 0.091201425, 0.026640236, 0.15468991, 0.36369103, 0.9462943, 0.0063298345, 0.72643405, 0.15416229, 0.9989488, 0.3602597, 0.8026867, 0.52236784, 0.8901442, 0.69515526, 0.59382325, 0.7458346, 0.95818526, 0.5083475, 0.09321368, 0.8753361, 0.26350176, 0.6790923, 0.6423713, 0.833, 0.5457574, 0.8288555, 0.1950497, 0.52434474, 0.7186958, 0.77294624, 0.24331266, 0.10928261, 0.8677729, 0.084388554, 0.7637791, 0.6102848, 0.8594893, 0.16542625, 0.9389486]]
Result: [type: Int64
field_name: "book_id"
scalars {
 long_data {
 data: 1938
 data: 668
 }
}
field_id: 100
, type: Int64
field_name: "word_count"
scalars {
 long_data {
 data: 11938
 data: 10668
 }
}
field_id: 101
]
search 9 latency: 1.076 seconds

5.引用

  • The High-Performance Vector Database Built for Scale | Milvus
  • Milvus | Open-source Vector Databse created by Zilliz

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2165913.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机的错误计算(一百零四)

摘要 计算机的错误计算&#xff08;二十七&#xff09;引入了错数概念。本节给出更为严格的证明。 本节主要讨论表达式计算结果中错误有效数字的数量&#xff0c;简称之为错数。因为0不含有有效数字&#xff0c;因此&#xff0c;除非特别说明&#xff0c;否则&#xff0c;本节…

【Go】-Websocket的使用

目录 为什么需要websocket 使用场景 在线教育 视频弹幕 Web端即时通信方式 什么是web端即时通讯技术&#xff1f; 轮询 长轮询 长连接 SSE websocket 通信方式总结 Websocket介绍 协议升级 连接确认 数据帧 socket和websocket 常见状态码 gorilla/websocket实…

10-pg内核之锁管理器(五)行锁

概念 数据库采用MVCC方式进行并发控制&#xff0c;读写并不会互相阻塞&#xff0c;但是写之间仍然存在冲突。如果还是采用常规锁那样加锁&#xff0c;则会耗费大量共享内存&#xff0c;进而影响性能。所以行锁通过元组级常规锁和xmax结合的方式实现。一般先通过xmax进行可见性…

Unity 新导航寻路演示(2)

对于静态场景来说&#xff0c;只需要3步 1.为场景Ground添加网格表面组件并烘焙 2.为player添加导航代理 using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.AI;public class PlayerMove : MonoBehaviour {private NavMes…

2D动画转3D角色!无需建模- comfyUI工作流一键生成3d效果图!

如何将2d角色转化成3d角色&#xff1f; 不需要建模&#xff0c;通过一个2d转3d的工作流可以直接将你的2d图片转化成3d效果图。 而且操作特别简单&#xff0c;只需要3个步骤&#xff0c;这篇内容我们来说下这个工作路的使用 工作流特点 任意2D图片转换成3D风格 基于sd1.5模型…

ftdi_sio驱动学习笔记 3 - 端口操作

目录 1. ftdi_port_probe 1.1 私有数据结构ftdi_private 1.2 特殊probe处理 1.3 确定FTDI设备类型 1.4 确定最大数据包大小 1.5 设置读取延迟时间 1.6 初始化GPIO 1.6.1 使能GPIO 1.6.2 添加到系统 1.6.2.1 设置GPIO控制器的基本信息 1.6.2.2 设置GPIO控制器的元信息…

Apache Iceberg 与 Spark整合-使用教程(Iceberg 官方文档解析)

官方文档链接&#xff08;Spark整合Iceberg&#xff09; 1.Getting Started Spark 目前是进行 Iceberg 操作最丰富的计算引擎。官方建议从 Spark 开始&#xff0c;以理解 Iceberg 的概念和功能。 The latest version of Iceberg is 1.6.1.&#xff08;2024年9月24日11:45:55&…

如何在云端使用 Browserless 进行网页抓取?

云浏览器是什么&#xff1f; 云浏览器是一种基于云的组合&#xff0c;它将网页浏览器应用程序与一个虚拟化的容器相结合&#xff0c;实现了远程浏览器隔离的概念。开发人员可以使用流行的工具&#xff08;如 Playwright 和​ Puppeteer​&#xff09;来自动化网页浏览器&#…

repo 查看指定日期内,哪些仓库有修改,具体的修改详情

文章目录 想看指定时间段内仓库中修改了哪些具体的文件&#xff0c;是谁修改的&#xff0c;commit的备注信息等详情只想看某段时间内有更改的仓库的修改详情&#xff0c;其他没有修改的仓库不显示。 想看指定时间段内仓库中修改了哪些具体的文件&#xff0c;是谁修改的&#xf…

VSCode#include头文件时找不到头文件:我的解决方法

0.前言 1.在学习了Linux之后&#xff0c;我平常大部分都使用本地的XShell或者VSCode连接远程云服务器写代码&#xff0c;CentOS的包管理器为我省去了不少繁琐的事情&#xff0c;今天使用vscode打开本地目录想写点代码发现#include头文件后&#xff0c;下方出现了波浪线&#…

SparkSQL-初识

一、概览 Spark SQL and DataFrames - Spark 3.5.2 Documentation 我们先看下官网的描述&#xff1a; SparkSQL是用于结构化数据处理的Spark模块&#xff0c;与基本的Spark RDD API不同。Spark SQL提供的接口为Spark提供了更多关于正在执行的数据和计算结构的信息。在内部&a…

C++中vector类的使用

目录 1.vector类常用接口说明 1.1默认成员函数 1.1.1构造函数(constructor) 1.1.2 赋值运算符重载(operator()) 2. vector对象的访问及遍历操作(Iterators and Element access) 3.vector类对象的容量操作(Capacity) 4. vector类对象的修改及相关操作(Modifiers and Stri…

【Java数据结构】 ---对象的比较

乐观学习&#xff0c;乐观生活&#xff0c;才能不断前进啊&#xff01;&#xff01;&#xff01; 我的主页&#xff1a;optimistic_chen 我的专栏&#xff1a;c语言 &#xff0c;Java 欢迎大家访问~ 创作不易&#xff0c;大佬们点赞鼓励下吧~ 前言 上图中&#xff0c;线性表、堆…

[Redis][主从复制][上]详细讲解

目录 0.前言1.配置1.建立复制2.断开复制3.安全性4.只读5.传输延迟 2.拓扑1.一主一从结构2.一主多从结构2.树形主从结构 0.前言 说明&#xff1a;该章节相关操作不需要记忆&#xff0c;理解流程和原理即可&#xff0c;用的时候能自主查到即可主从复制&#xff1f; 分布式系统中…

PyTorch自定义学习率调度器实现指南

在深度学习训练过程中&#xff0c;学习率调度器扮演着至关重要的角色。这主要是因为在训练的不同阶段&#xff0c;模型的学习动态会发生显著变化。 在训练初期&#xff0c;损失函数通常呈现剧烈波动&#xff0c;梯度值较大且不稳定。此阶段的主要目标是在优化空间中快速接近某…

ResNet残差网络:深度学习的里程碑

引言 在深度学习领域&#xff0c;卷积神经网络&#xff08;CNN&#xff09;的发展一直推动着图像识别、目标检测等任务的进步。然而&#xff0c;随着网络层数的增加&#xff0c;传统的CNN面临着梯度消失和梯度爆炸等难题&#xff0c;限制了深层网络的训练效果。为了克服这些挑…

oracle direct path read处理过程

文章目录 缘起处理过程1.AWR Report 分析2.调查direct path read发生的table3.获取sql text4.解释sql并输出执行计划&#xff1a; 结论&#xff1a;补充direct path read等待事件说明 缘起 记录direct path read处理过程 处理过程 1.AWR Report 分析 问题发生时间段awr如下…

FortiGate OSPF动态路由协议配置

1.目的 本文档针对 FortiGate 的 OSPF 动态路由协议说明。OSPF 路由协议是一种 典型的链路状态(Link-state)的路由协议,一般用于同一个路由域内。在这里,路由 域是指一个自治系统,即 AS,它是指一组通过统一的路由政策或路由协议互相交 换路由信息的网络。在这个 AS 中,所有的 …

基于JSP+Servlet+Layui实现的博客系统

> 这是一个使用 Java 和 JSP 开发的博客系统&#xff0c;并使用 Layui 作为前端框架。 > 它包含多种功能&#xff0c;比如文章发布、评论管理、用户管理等。 > 它非常适合作为 Java 初学者的练习项目。 一、项目演示 - 博客首页 - 加载动画 - 右侧搜索框可以输入…

开源服务器管理软件Nexterm

什么是 Nexterm &#xff1f; Nexterm 是一款用于 SSH、VNC 和 RDP 的开源服务器管理软件。 安装 在群晖上以 Docker 方式安装。 在注册表中搜索 nexterm &#xff0c;选择第一个 germannewsmaker/nexterm&#xff0c;版本选择 latest。 本文写作时&#xff0c; latest 版本对…