Python近红外光谱数据分析

news2024/11/16 3:37:30

ChatGPT4.0在近红外光谱数据分析、定性/定量分析模型代码自动生成等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论,以及具体的代码实现方法掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、自编码器、U-Net等)的基本原理及Python、Pytorch代码实现方法。

ChatGPT4入门 

1、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

2、ChatGPT对话初体验(注册与充值、购买方法)

3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别

4、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

5、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

6、GPT Store简介

7、案例 

ChatGPT4 提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)
2、常用的ChatGPT提示词模板
3、基于模板的ChatGPT提示词优化
4、利用ChatGPT4 及插件优化提示词
5、通过promptperfect.jina.ai优化提示词
6、利用ChatGPT4 及插件生成提示词
7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)
8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)
9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用
10、案例演示:利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行
 


 

ChatGPT4助力信息检索与总结分析

1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)
2、利用ChatGPT4 及插件实现联网检索文献
3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)
4、利用ChatGPT4 及插件总结Youtube视频内容
5、案例 


 

ChatGPT4助力论文写作与投稿

1、利用ChatGPT4自动生成论文的总体框架

2、利用ChatGPT4完成论文翻译(指定翻译角色和翻译的领域、给一些背景提示)

3、利用ChatGPT4实现论文语法校正

4、利用ChatGPT4完成段落结构及句子逻辑润色

5、利用ChatGPT4完成论文评审意见的撰写与回复

6、案例 

ChatGPT4助力Python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、第三方模块的安装与使用

5、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

6、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

ChatGPT4助力近红外光谱数据预处理

1、近红外光谱数据标准化与归一化(为什么需要标准化与归一化?)

2、近红外光谱数据异常值、缺失值处理

3、近红外光谱数据离散化及编码处理

4、近红外光谱数据一阶导数与二阶导数

5、近红外光谱数据去噪与基线校正

6、近红外光谱数据预处理中的ChatGPT提示词模板 

ChatGPT4助力多元线性回归近红外光谱分析

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、多元线性回归中的ChatGPT提示词模板讲解

7、案例

ChatGPT4助力BP神经网络近红外光谱分析

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、训练集和测试集划分?BP神经网络常用激活函数有哪些?如何查看模型参数?

3、BP神经网络参数(隐含层神经元个数、学习率)的优化(交叉验证)

4、值得研究的若干问题(欠拟合与过拟合、评价指标的设计、样本不平衡问题等)

5、BP神经网络的Python代码实现

6、BP神经网络中的ChatGPT提示词模板 

7、案例:1)近红外光谱回归拟合建模;2)近红外光谱分类识别建模

ChatGPT4助力支持向量机(SVM)近红外光谱分析

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题?SVM的启发:样本重要性排序及样本筛选)

3、SVM的Python代码实现

4、SVM中的ChatGPT提示词模板

5、案例 :近红外光谱分类识别建模

ChatGPT4助力决策树、随机森林、Adaboost、XGBoost和LightGBM近红外光谱分析

1、决策树的基本原理(什么是信息熵和信息增益?ID3和C4.5算法的区别与联系)

2、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

4、Bagging与Boosting集成策略的区别

5、Adaboost算法的基本原理

6、Gradient Boosting Decision Tree (GBDT)模型的基本原理

7、XGBoost与LightGBM简介

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

9、决策树、随机森林、Adaboost、XGBoost与LightGBM的ChatGPT提示词模板

10、案例演示:近红外光谱回归拟合建模

ChatGPT4助力遗传算法近红外光谱分析

1、群优化算法概述

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、遗传算法中的ChatGPT提示词模板讲解

5、案例演示:基于二进制遗传算法的近红外光谱波长筛选


 

ChatGPT4助力近红外光谱变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS、特征选择算法的Python代码实现

5、PCA、PLS、特征选择算法中的ChatGPT提示词模板

6、案例:

1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

ChatGPT4助力Pytorch入门基础

1、深度学习框架概述(PyTorch、Tensorflow、Keras等)

2、PyTorch简介(动态计算图与静态计算图机制、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)

4、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

5、张量(Tensor)的常用属性与方法(dtype、device、requires_grad、cuda等)

6、张量(Tensor)的创建(直接创建、从numpy创建、依据概率分布创建)

7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

8、张量(Tensor)的索引与切片

9、PyTorch的自动求导(Autograd)机制与计算图的理解

10、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

ChatGPT4助力卷积神经网络近红外光谱分析

1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络参数调试技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

4、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

5、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

6、卷积神经网络中的ChatGPT提示词模板

7、案例:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)基于卷积神经网络的近红外光谱模型建立

ChatGPT4助力近红外光谱迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

5、案例:基于迁移学习的近红外光谱的模型传递(模型移植)

ChatGPT4助力自编码器近红外光谱分析

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、自编码器中的ChatGPT提示词模板

5、案例:

1)基于自编码器的近红外光谱数据预处理

2)基于自编码器的近红外光谱数据降维与有效特征提取

ChatGPT4助力U-Net多光谱图像语义分割

1、语义分割(Semantic Segmentation)简介

2、U-Net模型的基本原理

3、语义分割、U-Net模型中的ChatGPT提示词模板

4、案例:基于U-Net的多光谱图像语义分割

ChatGPT4助力深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)等原理

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词模板

6、案例

总结

1、总结、资料分享(图书、源代码等)

2、科研与创新方法总结(如何利用Google Scholar、Sci-Hub、ResearchGate等工具查阅文献资料、配套的数据和代码?如何更好地撰写论文的Discussion部分?)

GPT+Python近红外光谱数据分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2163207.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv10改进 | 特征融合篇,YOLOv10添加iAFF(多尺度通道注意力模块),二次创新C2f结构,提升小目标检测能力

摘要 特征融合,即来自不同层或分支的特征的组合,是现代网络架构中无处不在的一部分。虽然它通常通过简单的操作(如求和或拼接)来实现,但这种方式可能并不是最佳选择。在这项工作中,提出了一种统一且通用的方案,即注意力特征融合(Attentional Feature Fusion),适用于…

轻掺杂漏极(LDD)技术

轻掺杂漏极(LDD)是一种低能量、低电流的注入工艺,通过该工艺在栅极附近形成浅结,以减少靠近漏极处的垂直电场。对于亚微米MOSFET来说,LDD是必需的,以便抑制热电子效应,这种效应会导致器件退化并…

blender设置背景图怎么添加?blender云渲染选择

Blender是一款功能强大的3D建模软件,它以流畅的操作体验和直观的用户界面而闻名。使用Blender,你可以轻松地为你的3D模型添加背景图片。 以下是具体的操作步骤: 1、启动Blender:首先,打开Blender软件。访问添加菜单&a…

从头开始:构建一个基于C/C++的线程池

手搓线程池 线程池工作原理和实现线程池工作原理1. 线程池的基本组成:2. 线程池的基本执行流程:3. 线程池的核心参数:4. 线程池的生命周期:5. 线程池的执行策略: 相关知识点线程与进程的比较读写锁互斥锁 基于C语言的线…

【云原生安全篇】Trivy助力离线Harbor漏洞扫描实践

【云原生安全篇】Trivy助力离线Harbor漏洞扫描实践 目录 1 概念 1.1 为什么需要离线漏洞扫描1.2 Trivy和Harbor 简介1.3 实现离线漏洞扫描的技术方案 2 实践:Trivy 为Harbor提供离线漏洞扫描 2.1 环境准备2.2 安装Trivy作为数据库离线包下载代理 2.2.1 通过包管理…

MySQL_连接查询

课 程 推 荐我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈虚 拟 环 境 搭 建 :&#x1…

【大数据】数据中台怎么样助力企业创新和客户实践

在当今数字化时代,数据成为了企业竞争的关键因素。企业拥有大量的数据,但如何高效地利用这些数据,实现创新和提升客户体验,成为了一项重要的挑战。数据中台作为一种重要的数据管理和分析工具,发挥着关键的作用。本文将…

Maven 学习整理

1. Maven 简介 Maven 是 Apache 基金会推出的一个用于管理和构建 Java 项目的工具。它基于项目对象模型 (Project Object Model , 简 称: POM) 的概念,通过描述项目的依赖、结构、生命周期等,简化项目管理。 官网: https://maven.apache.org…

Spring、SpringBoot 框架功能学习

目录 一. Spring核心功能 二. Spring与SpringBoot区别 三. Spring与SpringMVC区别 四. SpringBoot与SpringCloud区别 五. 微服务组件 一. Spring核心功能 依赖注入(DI):Spring的核心功能是通过依赖注入来管理对象之间的依赖关系。依赖注…

第L4周:机器学习-KNN总结-分类

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 概念: 在第L4周:机器学习-K-邻近算法模型(KNN)-CSDN博客中学习了KNN的基本概念,本次主要加深印象&a…

scrapy 爬取微博(四)【最新超详细解析】: 设计篇

一、功能设计 开始开发之前我们先对本文的scrapy微博爬虫工程进行一个功能的设计,包含的功能模块如下: 功能模块具体描述微博文章爬取根据关键词、时间范围等参数爬取微博文章,获取用户名、ID、微博mid、微博内容、点赞、转发、评论等数据微…

全国各省市生产总值指数-工业增加值指数(1999-2020年)

工业增加值指的是工业企业在一定时期内通过生产活动创造的新增价值,它等于工业总产值减去工业中间投入的差额。这一指标的计算可以采用生产法和收入法两种方式。生产法通过计算工业总产值与中间消耗的差额来得到,而收入法则将工业增加值视为固定资产折旧…

HarmonyOS Next(纯血鸿蒙)它到底像谁

前言 24年的第1天有写过一篇关于鸿蒙的文章:不吹不黑,辩证看待开发者是否需要入坑鸿蒙 后续再也没有写关于鸿蒙的文章。 没错,我确实入坑了鸿蒙,并且成功上架了几款App和元服务,虽然当前的用户量还比较少&#xff0c…

微信小程序——引入 iconfont 矢量图标,如何使用引用阿里巴巴矢量图标

本文介绍如何在小程序中加入图标,效果如下图: 1、访部iconfont-阿里巴巴矢量图标库 找到需要的图标,然后添加入库 将增加好的图标添加到项目中 2、点击更新生成代码 生成后如下图 3、打开生成的css样式文件 4、在小程序中新建/static/iconfon…

利士策分享,如何在有限的时间内过上富足的生活?

利士策分享,如何在有限的时间内过上富足的生活? 在快节奏的现代生活中,追求富足不仅仅是物质上的丰盈,更是心灵的满足与生活的平衡。 如何在有限的时间内实现这一目标,是许多人心中的疑问。 以下是一些实用建议&#…

Ubuntu 20.04 内核升级后网络丢失问题的解决过程

在 Ubuntu 系统中,内核升级是一个常见的操作,旨在提升系统性能、安全性和兼容性。然而,有时这一操作可能会带来一些意外的副作用,比如导致网络功能的丧失。 本人本来是想更新 Nvidia 显卡的驱动,使用 ubuntu-drivers …

postman中使用Pre-request Script

一、get方法 get请求时 ,有多个params,并且有一个参数为sign,这个参数是有其他params拼接之后md5加密得到的,如何通过js语句获取params参数并生成sign。 const CryptoJS require(crypto-js); // 引入 CryptoJS 库进行 MD5 加密…

安卓数据存储——SQLite

一、SQLite数据库 创建表 CREATE TABLE IF NOT EXISTS user_info (_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,name VARCHAR NOT NULL,age INTEGER NOT NULL,height LONG NOT NULL,weight FLOAT NOT NULL);注: IF NOT EXISTS:如果该表不存在则创…

Docker更换阿里容器镜像源

以Mac为例, 一、获取阿里容器镜像加速器地址 访问阿里云官网https://cn.aliyun.com/ 登录阿里云,没有账号就注册一个 登录完成后在搜索框搜索,容器镜像服务,并打开 点击管理控制台,进入管理控制台 左侧点击镜像加速…

ubuntu重新安装clickhouse

1.卸载clickhouse 关闭原来的clickhouse sudo systemctl stop clickhouse-server 查看关闭clickhouse是否成功 sudo systemctl status clickhouse-server 备份配置文件 /etc/clickhouse-server/user.xml /etc/clickhouse-server/config.d/metrika.xml /etc/clickhouse…