无人机视角下的车辆数据集

news2024/9/24 17:45:09

车辆数据集 无人机视角下的车辆数据集。数据集为无人机俯拍的真实场景下的车辆机动车数据集。数据集已经标注好,yolo格式,txt标签。数据集已经划分好训练集(20970张图片)验证集(5242张图片)测试集(1442张图片)含类别标签文件,数据集大小3.5G左右,共分为5个类别:小汽车、面包车、公共汽车、货车、卡车。图片均为实拍,包含白天,黑夜等多种场景下的实拍图片,不含任何数据增强成分。数据集标注准确,商用级标注精度,可商用,yolo8m实测map50为85.2%。

无人机视角下的车辆数据集 (Drone View Vehicle Dataset, DVVD)

数据集描述

DVVD是一个专为无人机俯拍场景设计的车辆检测数据集,旨在帮助研究人员和开发者训练和评估在高空视角下识别不同类型的机动车(如小汽车、面包车、公共汽车、货车和卡车)的目标检测模型。该数据集包含大量高质量的真实场景图像,涵盖了白天和黑夜等多种光照条件下的实拍图片,并且已经使用YOLO格式进行了准确标注。数据集已预先划分为训练集、验证集和测试集,便于直接使用。

数据规模

  • 总样本数量:27654张图像
    • 训练集:20970张
    • 验证集:5242张
    • 测试集:1442张
  • 类别数量:5个不同类别的车辆
  • 数据集大小:约3.5G
  • 标签格式:YOLO格式 (TXT)

图像特性

  • 多样化场景:数据集中包括城市道路、乡村道路、高速公路等多种环境下的图像。
  • 多变环境:图像拍摄于不同的时间点(白天、黄昏、夜间),保证了算法对光照变化的适应能力。
  • 高质量图像:所有图像均为高分辨率,确保细节清晰,有助于提高模型的识别精度。
  • 真实场景:图像均为实际拍摄,未经过任何数据增强处理,确保了数据的真实性和多样性。
  • 商用级标注精度:数据集的标注质量非常高,适合商业应用。

类别列表

  1. 小汽车 (Car)
  2. 面包车 (Van)
  3. 公共汽车 (Bus)
  4. 货车 (Truck)
  5. 卡车 (Lorry)

应用场景

  • 智能交通系统:监控道路交通流量,辅助交通管理。
  • 自动驾驶:增强自动驾驶车辆在高空视角下的感知能力。
  • 城市规划:支持城市规划和基础设施建设的决策。
  • 安全监控:提高视频监控系统在高空视角下的目标检测性能。
  • 物流管理:优化物流路线规划和车辆调度。

数据集结构

一个典型的文件夹结构可能如下所示:

 
1drone_view_vehicle_dataset/
2├── images/
3│   ├── train/
4│   │   ├── img_00001.jpg
5│   │   ├── img_00002.jpg
6│   │   └── ...
7│   ├── val/
8│   │   ├── img_00001.jpg
9│   │   ├── img_00002.jpg
10│   │   └── ...
11│   ├── test/
12│   │   ├── img_00001.jpg
13│   │   ├── img_00002.jpg
14│   │   └── ...
15├── labels/
16│   ├── train/
17│   │   ├── img_00001.txt
18│   │   ├── img_00002.txt
19│   │   └── ...
20│   ├── val/
21│   │   ├── img_00001.txt
22│   │   ├── img_00002.txt
23│   │   └── ...
24│   ├── test/
25│   │   ├── img_00001.txt
26│   │   ├── img_00002.txt
27│   │   └── ...
28├── class_names.txt  # 类别名称文件
29├── train.txt  # 训练集图像路径列表
30├── val.txt  # 验证集图像路径列表
31└── test.txt  # 测试集图像路径列表

标签格式说明

  • YOLO格式
    • 文件名与对应的图像文件名相同,但扩展名为.txt
    • 每行代表一个目标,格式为class_id x_center y_center width height,其中所有的值都是相对于图像尺寸的比例形式(归一化到[0, 1]之间)。

示例

假设一张图片img_00001.jpg的分辨率为800x600像素,其对应的YOLO格式标签文件img_00001.txt内容如下:

 
10 0.5 0.3 0.2 0.1  # Car
21 0.3 0.4 0.1 0.1  # Van
32 0.7 0.6 0.2 0.2  # Bus
43 0.2 0.8 0.3 0.3  # Truck
54 0.9 0.7 0.1 0.1  # Lorry

数据准备

为了使用此数据集来训练YOLO或其他基于YOLO格式的目标检测模型,您需要执行以下步骤:

  1. 确认数据集划分:确保训练集、验证集和测试集已经正确划分。
  2. 加载数据:根据所选的框架(如YOLOv5/v7或YOLOv8)加载数据。
  3. 设置配置文件:根据所选的框架设置相应的配置文件,指定类别数和其他相关参数。
  4. 开始训练过程:启动训练过程并监控模型的性能。

工具和脚本

您可以利用Python库如torchvisionPyTorch来加载和处理数据。以下是一些常用脚本的示例代码,包括数据加载、模型训练和评估。

脚本1: 数据加载
 
1import os
2from torchvision import datasets, transforms
3from torch.utils.data import DataLoader
4
5def load_data(data_dir, batch_size=32):
6    transform = transforms.Compose([
7        transforms.Resize((640, 640)),  # 根据实际情况调整输入尺寸
8        transforms.ToTensor(),
9        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
10    ])
11    
12    train_dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=transform)
13    val_dataset = datasets.ImageFolder(os.path.join(data_dir, 'val'), transform=transform)
14    test_dataset = datasets.ImageFolder(os.path.join(data_dir, 'test'), transform=transform)
15    
16    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
17    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
18    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
19    
20    return train_loader, val_loader, test_loader
21
22# 使用示例
23data_dir = 'path/to/drone_view_vehicle_dataset'
24train_loader, val_loader, test_loader = load_data(data_dir)
脚本2: 模型训练
 

python

深色版本

1import torch
2import torch.nn as nn
3import torch.optim as optim
4from ultralytics import YOLO
5
6def train_model(model, train_loader, val_loader, num_epochs=10, learning_rate=0.001):
7    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8    model.to(device)
9    
10    criterion = nn.CrossEntropyLoss()
11    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
12    
13    for epoch in range(num_epochs):
14        model.train()
15        running_loss = 0.0
16        for inputs, labels in train_loader:
17            inputs, labels = inputs.to(device), labels.to(device)
18            
19            optimizer.zero_grad()
20            outputs = model(inputs)
21            loss = criterion(outputs, labels)
22            loss.backward()
23            optimizer.step()
24            
25            running_loss += loss.item()
26        
27        print(f'Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/len(train_loader)}')
28        
29        # 验证
30        model.eval()
31        correct = 0
32        total = 0
33        with torch.no_grad():
34            for inputs, labels in val_loader:
35                inputs, labels = inputs.to(device), labels.to(device)
36                outputs = model(inputs)
37                _, predicted = torch.max(outputs.data, 1)
38                total += labels.size(0)
39                correct += (predicted == labels).sum().item()
40        
41        print(f'Validation Accuracy: {100 * correct / total:.2f}%')
42
43# 使用示例
44model = YOLO('yolov8m.yaml')  # 加载YOLOv8m模型
45train_loader, val_loader, _ = load_data('path/to/drone_view_vehicle_dataset')
46train_model(model, train_loader, val_loader)
脚本3: 模型评估
 

python

深色版本

1import torch
2from torch.utils.data import DataLoader
3
4def evaluate_model(model, test_loader):
5    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6    model.to(device)
7    model.eval()
8    
9    correct = 0
10    total = 0
11    with torch.no_grad():
12        for inputs, labels in test_loader:
13            inputs, labels = inputs.to(device), labels.to(device)
14            outputs = model(inputs)
15            _, predicted = torch.max(outputs.data, 1)
16            total += labels.size(0)
17            correct += (predicted == labels).sum().item()
18    
19    print(f'Test Accuracy: {100 * correct / total:.2f}%')
20
21# 使用示例
22test_loader = load_data('path/to/drone_view_vehicle_dataset')[2]
23evaluate_model(model, test_loader)

项目介绍

项目名称

基于YOLOv8的无人机视角车辆检测系统

项目描述

该项目旨在开发一个基于YOLOv8的无人机视角车辆检测系统,能够准确地识别和分类不同类型的车辆。通过使用上述DVVD数据集,我们将训练一个高效的卷积神经网络(CNN)模型,实现对五种不同类型车辆的检测任务。项目的主要目标是提高车辆检测的准确性和鲁棒性,同时提供易于部署和使用的接口,方便集成到现有的智能交通系统和自动驾驶平台中。

项目目标

  • 高准确性:在测试集上达到较高的平均精度均值 (mAP)。
  • 鲁棒性:在不同光照条件和环境背景下保持良好的检测效果。
  • 易用性:提供易于部署和使用的接口,方便集成到现有的系统中。
  • 可扩展性:支持未来添加新的车辆类别。

项目结构

 

深色版本

1drone_view_vehicle_detection_project/
2├── data/
3│   ├── drone_view_vehicle_dataset/
4│   │   ├── images/
5│   │   │   ├── train/
6│   │   │   ├── val/
7│   │   │   ├── test/
8│   │   ├── labels/
9│   │   │   ├── train/
10│   │   │   ├── val/
11│   │   │   ├── test/
12│   │   ├── class_names.txt
13│   │   ├── train.txt
14│   │   ├── val.txt
15│   │   └── test.txt
16├── models/
17│   ├── yolov8m.py  # YOLOv8m模型定义
18├── trainers/
19│   ├── trainer.py  # 训练器
20├── utils/
21│   ├── utils.py  # 工具函数
22├── scripts/
23│   ├── load_data.py
24│   ├── train_model.py
25│   ├── evaluate_model.py
26├── notebooks/
27│   ├── data_exploration.ipynb  # 数据探索笔记本
28│   ├── model_training.ipynb  # 模型训练笔记本
29│   ├── model_evaluation.ipynb  # 模型评估笔记本
30├── requirements.txt  # 依赖库
31└── README.md  # 项目说明文件

项目流程

  1. 数据准备

    • 确认数据集已划分为训练集、验证集和测试集。
    • 使用load_data.py脚本加载数据。
  2. 数据探索

    • 使用data_exploration.ipynb笔记本探索数据集,了解数据分布和质量。
  3. 模型训练

    • 使用train_model.py脚本训练模型。
    • 根据需要调整超参数和模型配置。
  4. 模型评估

    • 使用evaluate_model.py脚本评估模型性能。
    • 生成可视化结果,比较不同模型的表现。
  5. 推理和应用

    • 将模型集成到实际应用中,实现车辆检测功能。
  6. 结果可视化

    • 使用可视化工具展示模型的检测结果。

改进方向

如果您已经使用上述方法对该数据集进行了训练,并且认为还有改进空间,以下是一些可能的改进方向:

  1. 数据增强

    • 引入数据增强策略,例如旋转、翻转、缩放、颜色抖动等,以提高模型的泛化能力。
    • 使用混合增强技术,如MixUp、CutMix等,以增加数据多样性。
  2. 模型优化

    • 调整模型超参数,例如学习率、批量大小、优化器等,以找到最佳配置。
    • 尝试使用不同的网络架构,例如YOLOv8的不同版本(s, m, l, x),以提高检测精度。
    • 引入注意力机制,如SENet、CBAM等,以增强模型对关键区域的关注。
  3. 损失函数

    • 尝试使用不同的损失函数,例如Focal Loss、Label Smoothing等,以改善检测效果。
    • 结合多种损失函数,例如交叉熵损失和正则化损失的组合,以平衡不同类型的任务。
  4. 后处理

    • 使用非极大值抑制(NMS)等后处理技术,以减少误检和漏检。
    • 优化边界框回归,提高定位精度。
  5. 迁移学习

    • 使用预训练模型进行微调,利用大规模数据集(如COCO)上的预训练权重,加快收敛速度并提高性能。
  6. 集成学习

    • 使用多个模型进行集成学习,通过投票或加权平均的方式提高最终的检测效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2160987.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

企业级Windows server服务器技术(1)

windows server服务器安装 准备工作: 1.准备安装的镜像 2.安装好虚拟机VMware或者virtual box 3.准备安装的位置(选择你的电脑的磁盘上比较空闲的位置,新建一个文件夹并命名) 4.开始安装(按步骤)----…

Threejs绘制圆锥体

上一章节实现了胶囊体的绘制,这节来绘制圆锥体,圆锥体就是三角形旋转获得的,如上文一样,先要创建出基础的组件,包括场景,相机,灯光,渲染器。代码如下: initScene() {this…

电力系统中有哪些好的运维的平台?

摘要:介绍台商大厦,采用综合保护装置、多功能仪表、变压器温控仪、直流屏、烟雾传感器、门磁开关、网络摄像头等设备,采集配电现场的各种电参量和状态信号。系统采用现场就地组网的方式,组网后通过现场网关远传至阿里云平台&#…

【模板进阶】std::enable_if

一、 SFINAE 在介绍 s t d : : e n a b l e _ i f std::enable\_if std::enable_if之前,先介绍一个概念: S F I N A E SFINAE SFINAE,全称是: S u b s t i t u t i o n F a i l u r e i s n o t a n E r r o r Substitution\ Fai…

【java21】java21新特性之JavaDoc中支持代码片段

在Java18之前,已经支持在JavaDoc中引入代码片段,这样可以在某些场景下更好的展示描述信息,但是之前的支持功能有限,比如我想高亮代码片段中的某一段代码是无能为力的。现在Java18优化了这个问题,增加了snippet来引入更…

短视频矩阵管理系统贴牌 源码开发

抖音账号矩阵的开发核心维度包括: 多账号管理开发维度:通过运用不同类型的账号矩阵,可以实现统一且便捷的管理。目前,矩阵系统支持管理抖音、快手、视频号,b站的账号,未来计划加入小红书,tk等等的账号管理。 矩阵账号…

如何编写高质量的用户故事

本文详细介绍了如何在敏捷开发过程中编写高质量用户故事(User Story),包括用户故事的定义、结构、撰写技巧以及如何与产品待办列表(Product Backlog)中的其他工作项(PBI)相结合,以提…

【Elasticsearch系列廿二】特殊参数

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

解释器模式原理剖析和Spring中的应用

解释器模式原理剖析和Spring中的应用 解释器模式 是一种行为型设计模式,它定义了一种语言的文法表示,并提供了一个解释器来处理该文法的表达式。解释器模式可以用于构建语法解释器,例如计算器、简单编程语言的解释器等。 核心思想&#xff1a…

成功使用DDNS动态域名访问我的群晖NAS(TP-link路由器)

当NAS设备部署在动态IP环境中(如家庭或小型办公室宽带),远程访问常常受到IP地址频繁变动的困扰。为了解决这一问题,结合神卓互联NAS公网助手提供的DDNS(动态域名服务)功能,我们可以轻松实现通过…

蓝牙、WiFi、2.4G、Zigbee、LoRa、NB-IoT的区别与应用场景

在现代科技的推动下,无线通信技术已经成为我们生活中不可或缺的一部分。从智能家居到工业自动化,从远程监控到环境传感,每一种技术都有其独特的优势和应用场景。今天,我们将深入探讨六种主流的无线通信技术——蓝牙、WiFi、2.4G、…

基于vue框架的大参林药品信息管理系统的设计与实现8b4gt(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能:用户,药品分类,药品信息,医生 开题报告内容 基于Vue框架的大参林药品信息管理系统的设计与实现开题报告 一、引言 随着医疗健康行业的快速发展和信息化浪潮的推进,药品信息管理已成为提升医疗服务效率、保障患者用药安全、…

Activiti7《第九式:破气式》——流畅驱动工作流进程。面试题大全

冲冲冲!开干 这篇文章将分为九个篇章,带你逐步掌握工作流的核心知识。“破气式”,代表着工作流中的 无形之力,它是贯穿整个流程的 关键驱动 不知不觉已经到了独孤九剑最后一式了,我相信到这里之后各位都已经出神入化…

状态模式原理剖析

《状态模式原理剖析》 状态模式(State Pattern) 是一种行为设计模式,它允许对象在其内部状态改变时改变其行为。换句话说,当对象状态发生变化时,它的行为也会随之变化。 核心思想: 状态模式将对象的不同状…

爬虫逆向学习(七):补环境动态生成某数四代后缀MmEwMD

声明:本篇文章内容是整理并分享在学习网上各位大佬的优秀知识后的实战与踩坑记录 前言 这篇文章主要是研究如何动态生成后缀参数MmEwMD的,它是在文章爬虫逆向学习(六):补环境过某数四代的基础上进行研究的,代码也是在它基础上增…

华为HarmonyOS灵活高效的消息推送服务(Push Kit) -- 10 推送实况窗消息

场景介绍 实况窗是一种帮助用户聚焦正在进行的任务,方便快速查看和即时处理的通知形态。有关实况窗简介、权限申请、开放场景、设计规范等说明,请参见Live View Kit简介。 通过Push Kit发送的实况窗消息支持三种操作类型,分别是&#xff1a…

【全新课程】正点原子《基于GD32 ARM32单片机项目实战入门》培训课程上线!

正点原子《ESP32物联网项目实战》全新培训课程上线啦!正点原子工程师手把手教你学!彻底解决ARM32单片机项目入门难的问题! 一、课程介绍 本课程专为ARM32单片机的入门学习者设计,涵盖了环境搭建、编程软件使用、模块基础驱动和多…

矩阵的逆怎么算?逆矩阵公式来了(附逆矩阵计算器)

大家好,这里是效率办公指南! 📚 在线性代数中,逆矩阵是一个非常重要的概念。一个方阵如果存在逆矩阵,意味着该矩阵是可逆的,或者说是非奇异的。逆矩阵在解决线性方程组、计算矩阵的方根等方面有着广泛的应…

利用Accelerate()进行pytorch的多GPU加速

简介 官方Github:https://github.com/huggingface/accelerate Accelerate 是为喜欢编写PyTorch模型的训练循环但不愿意编写和维护使用多GPU/TPU/fp16所需的样板代码的PyTorch用户创建的。 它可以仅加速与多 GPU/TPU/fp16 相关的样板代码,并保持其余代…

Pyspark dataframe基本内置方法(5)

文章目录 Pyspark sql DataFrame相关文章toDF 设置新列名toJSON row对象转换json字符串toLocallterator 获取迭代器toPandas 转换python dataframetransform dataframe转换union unionALL 并集不去重(按列顺序)unionByName 并集不去重(按列名…