计算机视觉实战项目4(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)

news2024/12/25 9:35:21

往期热门项目回顾:

计算机视觉项目大集合

改进的yolo目标检测-测距测速

路径规划算法

图像去雨去雾+目标检测+测距项目

交通标志识别项目

yolo系列-重磅yolov9界面-最新的yolo

姿态识别-3d姿态识别

深度学习小白学习路线

AI健身教练-引体向上-俯卧撑计数代码-仰卧起坐姿态估计-康复训练姿态识别-姿态矫正(附代码)

yolov8双目测距-yolov8+sgbm(原理+代码)

yolov5单目测距+速度测量+目标跟踪(算法介绍和代码

YOLOv8界面-目标检测+语义分割+追踪+姿态识别(姿态估计)+界面DeepSort/ByteTrack-PyQt-GUI

二维码识别系统(代码+教程)-计算机视觉项目实战

行人3d目标检测-车辆3d目标检测-3d目标检测(代码+教程)

低光照图像增强算法-图像增强(代码+教程)

动物关键点数据集-yolov8 pose动物关键点识别-动物姿态估计-keypoints(代码+数据集)

改进的yolov10 deepsort目标跟踪(yolo改进+最新算法+附代码和教程)

yolov8安卓部署+QT+NCNN(附代码+教程)

单目测距(yolo目标检测+标定+测距代码)

基于opencv的车牌检测和识别系统(代码+教程)

yolov8道路缺陷检测-道路坑洞检测-道路裂缝检测

yolov8旋转目标检测之绝缘子检测-从数据加载到模型训练、部署

yolov5足球运动分析-速度分析-足球跟踪

yolov8机械臂关键点检测模型部署+教程+代码+数据集+工业应用

yolov8多任务模型-目标检测+车道线检测+可行驶区域检测-yolo多检测头代码+教程

基于YOLOv5的教室人数检测统计系统

智慧课堂学生行为数据集

自动泊车系统中的YOLOv8 pose关键点车位线检测

基于yolov8的红绿灯目标检测训练与Streamlit部署(代码+教程)

改进YOLO的群养猪行为识别算法研究及部署(小程序-网站平台-pyqt)

车辆跟踪及测距

  • 该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。
  • 该项目使用了 YOLOv5目标检测算法和 DeepSORT
    目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!

教程博客_传送门链接------->单目测距和跟踪
在这里插入图片描述

yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)

  • 实现了局域的出/入 分别计数。
  • 显示检测类别,ID数量。
  • 默认是 南/北 方向检测,若要检测不同位置和方向,需要加以修改
  • 可在 count_car/traffic.py 点击运行
  • 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车、船。
  • 检测类别可在 objdetector.py 文件修改。

原文链接:https://blog.csdn.net/ALiLiLiYa/article/details/131819630
在这里插入图片描述

目标跟踪

  • YOLOv5是一种流行的目标检测算法,它是YOLO系列算法的最新版本。
  • YOLOv5采用了一种新的架构,可以在保持高准确性的同时提高检测速度。
  • 在本文中,我们将介绍如何使用YOLOv5_deepsort算法来进行船舶跟踪和测距。

教程博客_传送门链接------->目标跟踪
在这里插入图片描述

车道线识别

  • 本文主要讲述项目集成:从车道线识别、测距、到追踪,集各种流行模型于一体!
  • 不讲原理,直接上干货!
  • 把下文环境配置学会,受益终生!
  • 各大项目皆适用

教程博客_传送门链接------->车道线识别+目标检测
看下本项目的效果:
在这里插入图片描述

语义分割

  • MMsegmentation是一个基于PyTorch的图像分割工具库,
  • 它提供了多种分割算法的实现,包括语义分割、实例分割、轮廓分割等。
  • MMsegmentation的目标是提供一个易于使用、高效、灵活且可扩展的平台,以便开发者可以轻松地使用最先进的分割算法进行研究和开发

教程博客_传送门链接------->语义分割

在这里插入图片描述

姿态识别

  • 体姿态估计是计算机视觉中的一项重要任务
  • 具有各种应用,例如动作识别、人机交互和监控。
  • 近年来,基于深度学习的方法在人体姿态估计方面取得了显著的性能。
  • 其中最流行的深度学习方法之一是YOLOv7姿态估计模型


程博客_传送门链接------->:姿态识别https://blog.csdn.net/ALiLiLiYa/article/details/129482358
在这里插入图片描述

图像分类

  • 在本教程中,您将学习如何使用迁移学习训练卷积神经网络以进行图像分类。您可以在 cs231n 上阅读有关迁移学习的更多信息。
  • 本文主要目的是教会你如何自己搭建分类模型,耐心看完,相信会有很大收获。废话不多说,直切主题…
  • 首先们要知道深度学习大都包含了下面几个方面:

1.加载(处理)数据
2.网络搭建
3.损失函数(模型优化)
4 模型训练和保存

  • 把握好这些主要内容和流程,基本上对分类模型就大致有了个概念。

**教程博客_传送门链接--------->:图像分类
在这里插入图片描述

交通标志识别

  1. 项目是一个基于 OpenCV 的交通标志检测和分类系统
  2. 可以在视频中实时检测和分类交通标志。检测阶段使用图像处理技术,
  3. 在每个视频帧上创建轮廓并找出其中的所有椭圆或圆形。它们被标记为交通标志的候选项。

教程博客_传送门链接------->交通标志识别
在这里插入图片描述

表情识别、人脸识别

  • 面部情绪识别(FER)是指根据面部表情识别和分类人类情绪的过程。
  • 通过分析面部特征和模式,机器可以对一个人的情绪状态作出有根据的推断。
  • 这个面部识别的子领域高度跨学科,涉及计算机视觉、机器学习和心理学等领域的知识

教程博客_传送门链接------->表情识别
在这里插入图片描述

疲劳检测

  • 瞌睡经常发生在汽车行驶的过程中
  • 该行为害人害己,如果有一套能识别瞌睡的系统,那么无疑该系统意义重大!

教程博客_传送门链接------->疲劳检测
在这里插入图片描述

车牌识别

  • 用python3+opencv3做的中国车牌识别
  • 包括算法和客户端界面,只有2个文件,一个是界面代码,一个是算法代码
  • 点击即可出结果,方便易用!

链接:车牌识别
大致的UI界面如下,点击输入图片,右侧即可出现结果!
在这里插入图片描述

代码

额外说明:算法代码只有500行,测试中发现,车牌定位算法的参数受图像分辨率、色偏、车距影响。

--->qq 1309399183----------<代码交流
	def from_pic(self):
		self.thread_run = False
		self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])
		if self.pic_path:
			img_bgr = predict.imreadex(self.pic_path)
			self.imgtk = self.get_imgtk(img_bgr)
			self.image_ctl.configure(image=self.imgtk)
			resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)
			for resize_rate in resize_rates:
				print("resize_rate:", resize_rate)
				r, roi, color = self.predictor.predict(img_bgr, resize_rate)
				if r:
					break
			#r, roi, color = self.predictor.predict(img_bgr, 1)
			self.show_roi(r, roi, color)

图像去雾去雨+目标检测+单目测距结合

  • 0.0实时感知本车周围物体的距离对高级驾驶辅助系统具有重要意义,当判定物体与本车距离小于安全距离时便采取主动刹车等安全辅助功,
  • 0.1这将进一步提升汽车的安全性能并减少碰撞的发生。上一章本文完成了目标检测任务,接下来需要对检测出来的物体进行距离测量。
  • 1.首先描述并分析了相机成像模型,推导了图像的像素坐标系与世界坐标系之间的关系。
  • 2.其次,利用软件标定来获取相机内外参数并改进了测距目标点的选取。
  • 3.最后利用测距模型完成距离的测量并对采集到的图像进行仿真分析和方法验证。
    传送门链接------------->:单目测距
    在这里插入图片描述

代码


        for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Warmup
        if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
            old_img_b = img.shape[0]
            old_img_h = img.shape[2]
            old_img_w = img.shape[3]
            for i in range(3):
                model(img, augment=opt.augment)[0]

        # Inference
        t1 = time_synchronized()
        with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
            pred = model(img, augment=opt.augment)[0]
        t2 = time_synchronized()
         distance=object_point_world_position(u, v, h, w, out_mat, in_mat):

路径规划

本节针对越野场景路径规划问题,采用栅格法建立障碍物、威胁物和越野道路模型,模拟真实的越野环境场景。

  • 引入方向变化惩罚和局部区域复杂度惩罚来优化A算法,使算法规划出的路径更平滑,算法效率更高效。

  • 采用改进 Floyd 算法对路径进行双向平滑,并且进行了防碰撞处理,来确保规划出路径的安全可靠性。

  • 仿真结果表明,所改进的 A算法与传统算法相比较,效率提高了 30%,拐点数减少了4
    倍,所提算法能够在越野环境多重因素综合影响以及不同车辆性能和任务的要求下快速的规划出安全的路径。
    传送门链接---------------->:A star
    在这里插入图片描述

代码

###############创建A-Star类############
class AStar:
    
    # 描述AStar算法中的节点数据
    class Node:  
        #初始化
        def __init__(self, point, startPoint,endPoint, g=0,w=1,p=1):
            self.point = point  # 自己的坐标
            self.father = None  # 父节点
            self.g = g       # g值,g值在用到的时候会重新算
            
            # 计算h值,采用曼哈顿距离
            #self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10  
            
            #采用欧几里得距离
            #self.h = math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5)*10
            
            #采用对角距离
            pp=(1-p)+0.2*math.exp((math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5))/(math.pow((math.pow((endPoint.x - startPoint.x),2) + math.pow((endPoint.y - startPoint.y),2)),0.5)))
            Diagonal_step = min((endPoint.x - point.x),(endPoint.y - point.y))
            straight_step = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) - 2*Diagonal_step
            self.h  =(straight_step + math.pow(2,0.5)*Diagonal_step)*10*pp
            #print(pp)


            
    #初始化A-start
    def __init__(self, map2d, startPoint, endPoint, passTag=1.0):#map2d地图信息,startPoint起点, endPoint终点, passTag=1.0为不可行驶区域

        # 开启表
        self.openList = []
        # 关闭表
        self.closeList = []
        # 寻路地图
        self.map2d = map2d
        # 起点终点
        if isinstance(startPoint, Point) and isinstance(endPoint, Point):
            self.startPoint = startPoint
            self.endPoint = endPoint
        else:
            self.startPoint = Point(*startPoint)
            self.endPoint = Point(*endPoint)
 
        # 不可行走标记
        self.passTag = passTag
 
    def getMinNode(self):
        """
        获得openlist中F值最小的节点
        :return: Node
        """
        currentNode = self.openList[0]
        for node in self.openList:
            if node.g + node.h < currentNode.g + currentNode.h:
                currentNode = node
        return currentNode#返回最小代价的点
 

停车位检测

  • 基于深度学习的鱼眼图像中的停车点检测和分类是为二维物体检测而开发的。我们的工作增强了预测关键点和方框的能力。这在许多场景中很有用,因为对象不能用右上的矩形“紧密”表示。
  • 一个这样的例子,道路上的任何标记,由于透视效果,在现实世界中的对象矩形不会在图像中保持矩形,所以关键点检测显得格外重要。鱼眼图像还呈现了观察到这种现象的另一种场景,由于鱼眼宽广的视角,可以扑捉更多画像

链接:停车位检测

在这里插入图片描述

代码

#全部代码可加qq1309399183
def train():
    #parses command line args
    args = parse_args()

    #parses args from file
    if args.config_file is not None:
        cfg_from_file(args.config_file)

    if (args.FIX_MODEL_CHECKPOINT):
      args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace(" ", "")
      args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace("=", "")
      cfg.RESUME_CHECKPOINT = args.FIX_MODEL_CHECKPOINT
      cfg.CHECK_PREVIOUS = False
      if (os.path.exists(cfg.RESUME_CHECKPOINT) == False):
          print('Exiting the process as asked model for resuming is not found')
          exit()

    if (args.RESUME_CHECKPOINT):
      cfg.RESUME_CHECKPOINT = args.RESUME_CHECKPOINT

    if (args.LOG_DIR):
      cfg.EXP_DIR = args.LOG_DIR

    cfg.LOG_DIR = cfg.EXP_DIR

    if (args.PHASE):
      cfg.PHASE = []
      cfg.PHASE.append(args.PHASE)

    if (args.EVAL_METHOD):
      cfg.DATASET.EVAL_METHOD = args.EVAL_METHOD

    #for backward compatibility
    if cfg.DATASET.DATASET == 'psd':
      cfg.DATASET.DATASET = 'tiod'

    if cfg.DATASET.BGR_OR_RGB == True:
        #cfg.DATASET.PIXEL_MEANS = (123.68, 116.78, 103.94)
        #cfg.DATASET.PIXEL_MEANS = (123, 117, 104)
        cfg.DATASET.PIXEL_MEANS = (128.0, 128.0, 128.0) # simpler mean subtraction to keep data in int8 after mean subtraction

    print("cfg: ", cfg)

    for phase in cfg.PHASE:
      cfg_dir = cfg.LOG_DIR + '/' + phase + '_cfg/'
      os.makedirs(os.path.dirname(cfg_dir), exist_ok=True)
      shutil.copy(args.config_file, cfg_dir)

    # to making every run consistent # TII
    np.random.seed(100)
    torch.manual_seed(100)
    torch.cuda.manual_seed(100)
    random.seed(100)
    torch.cuda.manual_seed_all(999)
    torch.backends.cudnn.enabled = False

    train_model()

if __name__ == '__main__':
    train()

图像雾去雨与目标检测

  • 针对不同的天气则采取不同的图像前处理方法来提升图像质量。
  • 雾天天气 时,针对当下求解的透射率会导致去雾结果出现光晕、伪影现象,本文采用加权最小二乘法细化透射率透。
  • 针对四叉树法得到的大气光值不精确的问题,改进四叉树法来解决上述问题。将上述得到的透射率和大气光值代入大气散射模型完成去雾处理;
  • 在图像处理后加入目标检测,提高了目标检测精度以及目标数量。

下图展现了雾天处理后的结果
图第一列为雾霾图像,第二列为没有加入图像处理的目标检测结果图,第三列为去雾后的目标检测结果图。

在这里插入图片描述

无人机检测

  • 反无人机目标检测与跟踪的意义在于应对无人机在现实世界中可能带来的潜在威胁,并保障空域安全。以下是这方面的几个重要意义:
  • 空域安全:无人机的广泛应用给空域安全带来了新的挑战。通过开展反无人机目标检测与跟踪研究,可以及时发现和追踪潜在的无人机入侵行为,确保空域的安全和秩序。
  • 防范恶意活动:无人机技术的快速发展也为一些恶意活动提供了新的工具和手段,如无人机进行窥探、非法监听、破坏等。反无人机目标检测与跟踪的研究可以帮助及时发现和阻止这些恶意活动,维护社会的稳定和安全


传送门链接-------------->:无人机检测

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2160592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JVM】JVM执行流程和内存区域划分

是什么 Java 虚拟机 JDK&#xff0c;Java 开发工具包JRE&#xff0c;Java 运行时环境JVM&#xff0c;Java 虚拟机 JVM 就是 Java 虚拟机&#xff0c;解释执行 Java 字节码 JVM 执行流程 编程语言可以分为&#xff1a; 编译型语言&#xff1a;先将高级语言转换成二进制的机器…

爆火南卡开放式耳机,音质性能霸榜TOP1,行业唯一达专业HiFi级音质标准!

爆火南卡开放式耳机&#xff0c;音质性能霸榜TOP1&#xff0c;行业唯一达专业HiFi级音质标准&#xff01; 随着科技的不断进步&#xff0c;耳机市场迎来了又一次革命性的创新。南卡&#xff08;NANK&#xff09;品牌近日宣布&#xff0c;其最新力作——南卡Ultra耳夹开放式耳机…

大模型榜单汇总整理

大型语言模型&#xff08;LLM&#xff09;评估榜单提供了对不同模型性能的标准化比较&#xff0c;涵盖了从通用能力到特定领域应用的多个方面。这些榜单专注于评估模型在特定领域的应用能力&#xff0c;有助于开发者了解模型的优势和局限性&#xff0c;推动语言模型的发展和优化…

彩虹表攻击

彩虹表攻击是一种通过查找预计算哈希值来破解密码的技术。攻击者会生成一个包含大量常见密码及其哈希值的查找表&#xff0c;随后将这些哈希值与数据库中的密码哈希进行匹配&#xff0c;从而快速找出对应的明文密码。该攻击方法特别适用于使用弱密码且未进行加盐处理的系统。 相…

Spring Cloud Alibaba-(6)Spring Cloud Gateway【网关】

Spring Cloud Alibaba-&#xff08;1&#xff09;搭建项目环境 Spring Cloud Alibaba-&#xff08;2&#xff09;Nacos【服务注册与发现、配置管理】 Spring Cloud Alibaba-&#xff08;3&#xff09;OpenFeign【服务调用】 Spring Cloud Alibaba-&#xff08;4&#xff09;Sen…

Windows电脑使用VNC远程桌面本地局域网内无公网IP树莓派5

目录 前言 1. 使用 Raspberry Pi Imager 安装 Raspberry Pi OS 2. Windows安装VNC远程树莓派 3. 使用VNC Viewer公网远程访问树莓派 3.1 安装Cpolar步骤 3.2 配置固定的公网地址 3.3 VNC远程连接测试 4. 固定远程连接公网地址 4.1 固定TCP地址测试 作者简介&#xff1…

在Windows系统上安装的 Arrow C++ 库

在Windows系统上安装的 Arrow C 库 正文第一步第二步第三步第四步注: 检查是否安装成功 吐槽 正文 第一步 git clone gitgithub.com:apache/arrow.git第二步 打开powershell (好像cmd也可以,不过我试了powershell中不报错,cmd中报错,不是很清楚为什么) 打开arrow的目录 cd …

利士策分享,如何培养良好的工作习惯?

利士策分享&#xff0c;如何培养良好的工作习惯&#xff1f; 在这个快节奏、高压力的职场环境中&#xff0c;培养良好的工作习惯不仅关乎个人职业发展的顺畅度&#xff0c; 更是提升工作效率、保持身心健康的关键。 以下是一些实用的建议&#xff0c;帮助你在日常工作中逐步构…

fiddler监听安卓http请求

下载安装Fiddler 官网 配置 选择Options 打开模拟器找到设置 打开app请求就能实现接口的监听了 https需要单独处理 参考 https://blog.csdn.net/lengdaochuqiao/article/details/88170522

靠AI视频在短视频平台接单月入过万,她怎么做到的?AI视频真的来了

大家好&#xff0c;我是画画的小强 相信大家和我一样&#xff0c;从小也有一个导演梦&#xff0c;感谢AI时代&#xff0c;替我完成了这个梦想&#xff0c;如果你想知道如何实现的&#xff0c;今天这篇文章&#xff0c;你一定要看完&#xff01; 从去年11月份起&#xff0c;随…

MISC - 第三天(MSB二进制高地址位,ASCII编码,brainfuck编码)

前言 各位师傅大家好&#xff0c;我是qmx_07&#xff0c;今天继续讲解MISC题目 被嗅探的流量 观察题目信息&#xff0c;猜测可能是通过http网址传输文件&#xff0c;也可以查询内网ip进行筛查 过滤http协议&#xff0c;发现upload.php路径 查询POST提交请求 在第二条数据里…

【Python报错已解决】NameError: name ‘reload‘ is not defined

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 专栏介绍 在软件开发和日常使用中&#xff0c;BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…

开学季好物合集!带你揭秘2024最全数码好物清单!学生党必看!

开学季总是令人充满期待与憧憬。对于学生党来说&#xff0c;拥有合适的学习装备和数码好物&#xff0c;不仅能提升学习效率&#xff0c;还能为校园生活增添诸多便利与乐趣。在科技飞速发展的今天&#xff0c;数码产品的更新换代日新月异&#xff0c;市场上琳琅满目的数码好物让…

数据结构算法题

目录 轮转数组原地移除数组中所有元素val删除有序数组中的重复项合并两个有序数组 轮转数组 思路1&#xff1a; 1.利用循环将最后一位数据放到临时变量&#xff08;n&#xff09;中 2.利用第二层循环将数据往后移一位 3.将变量&#xff08;n&#xff09;的数据放到数组第一位 时…

slam入门学习笔记

SLAM是Simultaneous localization and mapping缩写&#xff0c;意为“同步定位与建图”&#xff0c;主要用于解决机器人在未知环境运动时的定位与地图构建问题&#xff0c;目前广泛用于机器人定位导航领域&#xff0c;VR/AR方面&#xff0c;无人机领域&#xff0c;无人驾驶领域…

9.23每日作业

仿照string类&#xff0c;自己手动实现 My_string list.h #ifndef LIST_H #define LIST_H #include <iostream>using namespace std;class My_string { private:char *ptr;int size;int len;public://无参构造My_string();//有参构造My_string(const char * src);My_st…

哈希——字符串哈希

回顾/本期梗概 上期我们学习了图论基础&#xff08;空降链接&#xff09;&#xff0c;本期我们将学习哈希中的字符串哈希。 1、什么是哈希 哈希算法是&#xff1a;通过哈希函数讲字符串、较大的数等转换为能够用变量表示的或者是直接能作为数组下标的数&#xff0c;通过哈希算法…

代码随想录算法训练营Day13 | 递归遍历、迭代遍历、层序遍历

目录 递归遍历和迭代遍历&#xff1a; 144.二叉树的前序遍历 94.二叉树的中序遍历 145.二叉树的后序遍历 层序遍历&#xff1a; 102.二叉树的层序遍历 107.二叉树的层序遍历Ⅱ 199.二叉树的右视图 637.二叉树的层平均值 429.N叉树的层序遍历 515.在每个树行中找最大…

计算机组成体系与组成结构错题解析【软考】

目录 前言进制转换码制补码 CPU的组成输入/输出技术中断相关概念输入/输出技术的三种方式比较周期相关知识 主存编址计算流水线技术层次化存储体系可靠性 前言 本文专门用来记录本人在做软考中有关计算机上组成体系与组成结构的错题&#xff0c;我始终认为教学相长是最快提高的…

0-1开发自己的obsidian plugin DAY 2

今天上午解决了三个问题 1. typescript长得丑/一片飘红/格式检查太严格 在vscode的settings里搜索下面这个然后false掉&#xff1a; "typescript.validate.enable": false 就不会一片飘红了&#xff08;其他下载第三方插件如TSLint和typescript hero的方法都不好使&…