计算机毕业设计hadoop+hive航班预测系统 飞机票航班数据分析可视化大屏 机票预测 机票爬虫 飞机票推荐系统 大数据毕业设计

news2025/1/12 6:05:26

《Hadoop+Hive航班预测系统》开题报告

一、课题背景与意义

随着全球航空业的快速发展,航班数据呈现出爆炸性增长的趋势。这些数据包含了航班时间、航线、价格、乘客量、天气条件等多种信息,对于航空公司来说,如何高效处理和分析这些数据,以优化航班安排、提高运营效率、提升服务质量,成为了一个重要的研究课题。Hadoop和Hive作为大数据处理领域的核心技术,以其强大的分布式存储和计算能力,为航班预测系统的开发提供了强有力的支持。

本课题旨在设计并实现一个基于Hadoop和Hive的航班预测系统,通过对历史航班数据的深度挖掘和分析,预测未来航班的准点率、乘客量、机票价格等关键指标,为航空公司提供决策支持,帮助航空公司优化航班安排、提高运营效率、提升服务质量,同时也有助于提升乘客的出行体验。

二、研究目标与内容

2.1 研究目标

本课题的主要目标是设计并实现一个基于Hadoop和Hive的航班预测系统,该系统能够高效处理和分析历史航班数据,构建航班预测模型,提供准点率、乘客量、机票价格等关键指标的预测功能,为航空公司提供决策支持。

2.2 研究内容

  1. 数据采集与预处理:从航空公司、机场、气象部门等多个渠道收集航班数据,包括航班时间、航线、价格、乘客量、天气条件等,利用Hadoop的HDFS进行数据存储,并进行数据清洗、转换和加载,确保数据质量。

  2. 数据分析与挖掘:运用Hive进行数据分析,通过SQL语言对航班数据进行聚合、统计和计算,提取有用的特征。基于历史数据,构建航班预测模型,包括准点率预测模型、乘客量预测模型、机票价格预测模型等。

  3. 预测模型构建:选择合适的机器学习算法或深度学习模型,根据历史数据进行模型训练和验证,得到预测模型的参数和准确度指标。通过不断优化模型,提高预测精度。

  4. 系统设计与实现:设计并实现航班预测系统的前端界面和后端逻辑,采用Java、Python等编程语言,结合Hadoop、Hive等框架进行系统开发。实现数据可视化功能,将预测结果以图表、地图等形式展示,方便用户理解和应用。

  5. 系统测试与优化:对系统进行测试,验证其有效性和可靠性,并根据测试结果进行优化改进。确保系统能够稳定运行,并满足航空公司的实际需求。

三、研究方法与技术路线

3.1 研究方法

  1. 文献调研:查阅国内外相关文献,了解航班预测系统的研究现状和发展趋势。
  2. 数据采集:利用爬虫技术从航空公司、机场、气象部门等渠道收集数据,并通过Hadoop的HDFS进行数据存储。
  3. 数据预处理:对数据进行清洗、转换和加载,确保数据质量。
  4. 数据分析与挖掘:运用Hive进行数据分析,提取有用特征,构建预测模型。
  5. 模型构建:选择合适的机器学习算法或深度学习模型进行模型训练和验证。
  6. 系统开发与测试:采用Java、Python等编程语言,结合Hadoop、Hive等框架进行系统开发,并进行系统测试和优化。

3.2 技术路线

  1. 数据采集:使用爬虫技术从多个数据源收集航班数据,包括航班时间、航线、价格、乘客量、天气条件等。
  2. 数据存储:利用Hadoop的HDFS进行数据存储,构建分布式数据库。
  3. 数据预处理:对数据进行清洗、转换和加载,确保数据质量。
  4. 数据分析与挖掘:运用Hive进行数据分析,提取有用特征。
  5. 预测模型构建:选择合适的机器学习算法或深度学习模型进行模型训练和验证。
  6. 系统设计与实现:采用Java、Python等编程语言,结合Hadoop、Hive等框架进行系统开发,实现数据可视化功能。
  7. 系统测试与优化:对系统进行测试,验证其有效性和可靠性,并根据测试结果进行优化改进。

四、预期成果与创新点

4.1 预期成果

  1. 完成基于Hadoop和Hive的航班预测系统的设计与实现,构建航班预测模型,提供准点率、乘客量、机票价格等关键指标的预测功能。
  2. 实现数据可视化功能,将预测结果以图表、地图等形式展示,方便用户理解和应用。
  3. 撰写毕业论文,准备答辩,通过验收。

4.2 创新点

  1. 技术融合:将Hadoop的分布式存储和Hive的数据分析能力相结合,实现航班数据的高效处理和分析。
  2. 多源数据融合:集成多个数据源的数据,包括航班数据、乘客数据、天气数据等,提高预测模型的准确性和可靠性。
  3. 实时预测:结合实时数据更新预测模型,实现航班预测的实时性和动态性。
  4. 可视化展示:通过可视化技术直观展示预测结果,为航空公司提供直观的决策支持。

五、工作计划与进度安排

5.1 阶段性工作计划

  1. 第一阶段(1-2周):进行文献调研和需求分析,明确课题目标和研究内容。
  2. 第二阶段(3-6周):进行数据采集与预处理,构建分布式数据库。
  3. 第三阶段(7-10周):进行数据分析与挖掘,构建航班预测模型。
  4. 第四阶段(11-14周):进行系统设计与实现,开发前端界面和后端逻辑。
  5. 第五阶段(15-16周):进行系统测试与优化,验证系统有效性和可靠性。
  6. 第六阶段(17周):撰写毕业论文,准备答辩。

5.2 进度安排

  • 2024年1-2月:进行文献调研和需求分析,完成开题报告。
  • 2024年3-5月:进行数据采集与预处理,构建分布式数据库。
  • 2024年6-8月:进行数据分析与挖掘,构建航班预测模型。
  • 2024年9-11月:进行系统设计与实现,开发前端界面和后端逻辑。
  • 2024年12月:进行系统测试与优化,撰写毕业论文,准备答辩。

六、参考文献

(此处省略具体参考文献列表,实际撰写时应列出所有引用的国内外相关文献)


以上即为《Hadoop+Hive航班预测系统》的开题报告,希望能够为您的论文撰写提供有力支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2159603.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大模型培训讲师叶梓:Llama Factory 微调模型实战分享提纲

LLaMA-Factory ——一个高效、易用的大模型训练与微调平台。它支持多种预训练模型,并且提供了丰富的训练算法,包括增量预训练、多模态指令监督微调、奖励模型训练等。 LLaMA-Factory的优势在于其简单易用的界面和强大的功能。用户可以在不编写任何代码的…

高校大数据实训管理平台怎么选择?

泰迪智能科技大数据实训管理平台分为多个方向包括:人工智能方向、大数据方向、商务数据分析方向,不同高校可以结合高校情况选择合适自己院校的相关产品平台。 高校实训管理平台是实验室模块的核心母平台,对实验室的所有课程及实训资源进行统…

【题解】CF2013A

首先抽自己一巴掌,A题自信提交直接WA,故写此题解警示一下(顺便水一水)。 翻译 原题链接 思路 显然,若搅拌机单位时间能处理的水果数 x x x小于人每次丢进去的数量 y y y,那人只需要一直扔进去就好了&…

【d48】【Java】【力扣】LCR 123. 图书整理 I

思路 方法1:放进list,将list倒置,利用stream,将list改为int类型 方法2:递归:递归通用思路;明确每一层做什么确定返回值确定什么地方接收下层的返回值 每一层:调用下层,然后把自己…

护理陪护小程序|陪护系统||陪护系统开发

在当今社会,随着人口老龄化的加剧和家庭结构的变化,护理与陪护服务的需求日益增长。为了更好地满足这一市场需求,并提升服务效率与质量,护理陪护小程序应运而生。这类小程序不仅为用户提供了便捷、高效的服务预约与管理平台&#…

DANN GRL

域自适应是指在目标域与源域的数据分布不同但任务相同下的迁移学习,从而将模型在源域上的良好性能迁移到目标域上,极大地缓解目标域标签缺失严重导致模型性能受损的问题。 介绍一篇经典工作 DANN : 模型结构 在训练阶段需要预测如下两个任务…

Redis:持久化

1. Redis持久化机制 Redis 支持 RDB 和 AOF 两种持久化机制,持久化功能有效地避免因进程退出造成数据丢失问题, 当下次重启时利⽤之前持久化的文件即可实现数据恢复。 2.RDB RDB 持久化是把当前进程数据⽣成快照保存到硬盘的过程,触发 RDB…

【第十一章:Sentosa_DSML社区版-机器学习之分类】

目录 11.1 逻辑回归分类 11.2 决策树分类 11.3 梯度提升决策树分类 11.4 XGBoost分类 11.5 随机森林分类 11.6 朴素贝叶斯分类 11.7 支持向量机分类 11.8 多层感知机分类 11.9 LightGBM分类 11.10 因子分解机分类 11.11 AdaBoost分类 11.12 KNN分类 【第十一章&…

Rustrover2024.2 正式发布:个人非商用免费,泰裤辣

如果这个世界本身 已经足够荒唐 那究竟什么才能算是疯狂 爱情就是这样 一旦错过了 就会有另一个人代替 我们知道 jetbrains 在今年的早些时候正式为 rust 语言发布了专用的 IDE ,也就是 rustrover。如今 rustrover 也正式跻身为 jetbrains IDE 系列的一员猛将。…

Dynamic Connected Networks for Chinese Spelling Check(ACL2021)

Dynamic Connected Networks for Chinese Spelling Check(ACL2021) 一.概述 文中认为基于bert的非自回归语言模型依赖于输出独立性假设。不适当的独立性假设阻碍了基于bert的模型学习目标token之间的依赖关系,从而导致了不连贯的问题。为些&#xff0c…

如何使用GLib的单向链表GSList

单向链表是一种基础的数据结构,也是一种简单而灵活的数据结构,本文讨论单向链表的基本概念及实现方法,并着重介绍使用GLib的GList实现单向链表的方法及步骤,本文给出了多个实际范例源代码,旨在帮助学习基于GLib编程的读…

docker如何升级MySQL为最新版本

今天安全扫描发现MySQL存在漏洞,不用想别的升级到最新版。本篇文章有两个目的,1)为自己做一个记录,下次升级的时候不用再浪费时间查资料;2)给大家一点帮助; 因为我是docker部署,所以…

docker 创建showdoc服务 showdoc容器部署教程

1. 下载最新版本镜像 # 按照最新版本 docker pull star7th/showdoc 2. 创建映射文件夹: # 创建文件夹 mkdir -p /data/showdoc_data# 可写权限 chmod 777 /data/showdoc_data 3.创建容器命令: docker run -d --name showdoc --userroot --privileged…

分享一个vue+spring的前后端项目

管理员页面 用户界面 后面的一部分 后端代码

leetcode第二十六题:删去有序数组的重复项

给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数量为 k ,你…

力扣题解1014

大家好,欢迎来到无限大的频道。 今日继续给大家带来力扣题解。 题目描述(中等): 最佳观光组合 给你一个正整数数组 values,其中 values[i] 表示第 i 个观光景点的评分,并且两个景点 i 和 j 之间的 距离…

C++ | Leetcode C++题解之第432题全O(1)的数据结构

题目&#xff1a; 题解&#xff1a; class AllOne {list<pair<unordered_set<string>, int>> lst;unordered_map<string, list<pair<unordered_set<string>, int>>::iterator> nodes;public:AllOne() {}void inc(string key) {if (…

R语言 基础笔记 2

起因&#xff0c; 目的: 偶然看到一个新的教程&#xff0c; 有些知识点&#xff0c;以前没见过&#xff0c;不熟悉&#xff0c; 现在遇到了&#xff0c;记录一下。 基础数据类型 2L&#xff0c; 表示整数 3 ^ 2, 表示求幂 class(a) 查看 类 typeof(a) 查看基本数据类型 s…

C/C++语言基础--C++构造函数、析构函数、深拷贝与浅拷贝等等相关知识讲解

本专栏目的 更新C/C的基础语法&#xff0c;包括C的一些新特性 前言 周末休息了&#xff0c;没有更新&#xff0c;请大家见谅哈&#xff1b;构造函数、析构函数可以说便随着C每一个程序&#xff0c;故学构造函数、析构函数是必要的&#xff1b;C语言后面也会继续更新知识点&am…

Linux 环境(rhel6.4)oracle11.2.0.1升级到11.2.0.4

停止监听 [oraclerhel64 ~]$ lsnrctl stop 关闭数据库 [oraclerhel64 ~]$ sqlplus / as sysdba SYSNKYYDB>shutdown immediate; 上传软件包并解压 [rootrhel64 ~]# mkdir /u01/upgrade [rootrhel64 ~]# chown -R oracle:oinstall /u01/upgrade/ [oraclerhel64 upgrad…