【第十一章:Sentosa_DSML社区版-机器学习之分类】

news2025/1/12 8:07:56

目录

11.1 逻辑回归分类

11.2 决策树分类

11.3 梯度提升决策树分类

11.4 XGBoost分类

11.5 随机森林分类

11.6 朴素贝叶斯分类

11.7 支持向量机分类

11.8 多层感知机分类

11.9 LightGBM分类

11.10 因子分解机分类

11.11 AdaBoost分类

11.12 KNN分类


【第十一章:Sentosa_DSML社区版-机器学习之分类】

11.1 逻辑回归分类

1.算子介绍

        逻辑回归虽然叫做回归,但属于分类算法中的二分类,又称logistic回归分析,是一种广义的线性回归分析模型,逻辑回归是在线性回归的基础上,通过sigmod函数映射,将数据由回归转为分类。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

reg_param

正则化参数

必填

Double

默认(0.0)

>=0

正则化系数

fit_intercept

是否拟合截距

必填

Boolean

单选:是,否

是否拟合截距

standardization

是否对数据归一化

必填

Boolean

单选:是,否

是否对数据归一化

elastic_net

弹性网络混合参数

必填

Double

默认0.0

[0,1]

弹性网络则是同时使用了L1和L2作为正则化项,参数中elastic_net为L1范数惩罚项所占比例。若=0时,弹性网络只剩L2范数的惩罚项。若等于1弹性网络退化为L1范数的惩罚项参数值越大对参数惩罚越大,越不容易过拟合

max_iteration

最大迭代次数

必填

Int

默认(100)

>0

最大迭代次数

tolerance

收敛偏差

必填

Double

默认(1E-6)

>= 0

收敛偏差

family

回归类别

必填

String

默认(auto)

单选:auto,binomial,multinomial

选择逻辑回归的类型auto:根据分类类别个数自动决定,若类别数为1个或者2个则为二元逻辑回归,否则为多元逻辑回归binomial:二元逻辑回归multinomial:多元逻辑回归

aggregation_depth

聚合树的深度

必填

Integer

2

>=2

聚合树的深度

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        逻辑回归分类算子属性设置如图所示。

逻辑回归分类算子属性设置

        其中弹性网格混合参数是同时使用L1和L2作为正则化项时, L1范数惩罚项所占比例,具体参照算子属性表格。正则化参数是损失函数中整个正则化项的参数。当运行到达最大迭代次数或收敛偏差小于设定的收敛偏差时停止迭代。聚合树深度为spark优化算法的参数,默认为2,当特征维度过大或数据分区过大时,建议调为更大的值。

(3)算子的运行

        逻辑回归分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接逻辑回归算子,右击算子,点击运行,得到逻辑回归分类模型。

运行逻辑回归分类算子获得逻辑回归分类模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

逻辑回归分类模型算子流

        右击模型可以查看模型的模型信息

模型信息

        模型的运行结果如图所示

逻辑回归分类模型运行结果

        模型的评估结果如图所示

逻辑回归分类模型评估结果

11.2 决策树分类

1.算子介绍

        决策树分类是一种简单易用的非参数分类器模型,它会在用户选定的特征列上不断进行分裂,使得在每一分支对目标变量纯度逐渐增高。直至到达分支目标变量一致,或者满足用户设置的终止条件。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

max_depth

树的最大深度

必填

Int

默认5

>=0且<=30

树的最大深度

max_bins

连续型属性划分最大分桶数

必填

Int

默认32

>=2

连续型属性划分最大分桶数

min_instances_per_node

最小实例数

必填

Int

默认1

>=1

最小实例数

min_infoGain

最小信息增益

必填

Double

默认0.0

>=0.0

在树节点上考虑分割的最小信息增益

impurity

信息纯度计算方式

必填

String

默认(gini)

单选:基尼,熵

用于信息增益计算的判据(不区分大小写)。支持:“熵”和“基尼”。GBT的算法是忽略该设置的

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        决策树分类算子属性设置如图所示

决策树分类算子属性设置

        前端可配置属性如图所示,树的最大深度,连续型属性划分最大分桶数,最小实例数,最小信息增益都是用来控制构建聚合树时的分裂程度。

(3)算子的运行

        决策树分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接决策树分类算子,右击算子,点击运行,得到决策树分类器模型

运行决策树分类算子获得决策树分类模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

决策树分类模型算子流

        右击模型,查看模型的模型信息

决策树分类模型信息

        模型的运行结果如图所示

决策树分类模型运行结果

        模型的评估结果如图所示

决策树分类模型评估结果

11.3 梯度提升决策树分类

1.算子介绍

        梯度提升决策树分类是一个Boosting聚合模型,它是由多个决策树一起组合和来预测。多个决策树之间是顺序组合关系,每一个决策树模型都会修正之前所有模型预测的误差。这样经过多个模型的修正,从而提升了整个聚合模型的预测精度。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

max_depth

树的最大深度

必填

Int

默认5

>=0且<=30

树的最大深度

max_bins

连续型属性划分最大分桶数

必填

Int

默认32

>=2

连续型属性划分最大分桶数

min_instances_per_node

最小实例数

必填

Int

默认1

>=1

最小实例数

min_infoGain

最小信息增益

必填

Double

默认0.0

>=0.0

在树节点上考虑分割的最小信息增益

feature_subset_strategy

树节点拆分的策略

必填

String

默认(auto)

单选:auto,all,onethird,sqrt,log2,选择n时,则由用户输入具体>0的数值。

“auto”:自动选择,如果子树个数为1时,则使用全部特征。如果子树个数> 1时(森林),则设置为sqrt(特征数量);“all”:使用所有特征;“onethird”:使用1/3的特征;“sqrt”:使用sqrt(特征数量);“log2”:使用log2(特征数量);“n”:当n在范围(0,1.0]时,为n*特征数。当n在范围(1,+∞)时,为特征数和n值两个之间的最小值。

subsampling_rate

子树的训练比例

必填

String

1.0

(0,1]

用于学习每个决策树的训练数据的比例

max_iter

最大迭代次数

必填

Integer

100

>0

最大迭代次数

step

步长

必填

Double

1.0

(0.0,1.0]

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        梯度提升决策树分类算子的属性设置如图所示

梯度提升决策树分类属性设置

        前端可配置属性如图所示,树的最大深度,最大容器数,最小实例数,最小信息增益都是用来控制构建梯度提升决策树时的分裂程度。子树的训练比例指,在学习每个决策树时所用训练数据的比例。子树的训练比例和步长都是为了防止过拟合。树节点拆分策略为树的每个节点拆分时要考虑的特征数,各选项的具体意义见算子的属性说明表格。

(3)算子的运行

        梯度提升决策树分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接梯度提升决策树分类器算子,右击算子,点击运行,得到梯度提升决策树分类模型。

运行梯度提升决策树分类算子获得梯度提升决策树分类模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

梯度提升决策树分类模型算子流

        右击模型,查看模型的模型信息,如图所示。

梯度提升决策树分类模型信息

        模型的运行结果如图所示

梯度提升决策树分类模型运行结果

模型的评估结果如图所示

梯度提升决策树分类模型评估结果

11.4 XGBoost分类

1.算子介绍

        XGBoost是Extreme Gradient Boosting的缩写,它是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。并且在分布式运行环境下进行了优化,可以解决数十亿规模的样本训练问题。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

num_round

迭代次数

必填

Int

100

[1, Int. MaxValue]

算法的迭代次数(树的数量)

eta

学习率

必填

Double

0.3

[0.0,1.0]

更新中减少的步长来防止过拟合。

gamma

最小分裂损失

必填

Double

0

[0, Double.MaxValue]

在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。

max_depth

树的最大深度

必填

Int

6

[1, Int.MaxValue]

这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。

min_child_weight

最小叶子节点样本权重和

必填

Double

1

[0, Double.MaxValue]

这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。

subsample

子采样率

必填

Double

1

(0,1]

将其设置为0.5意味着XGBoost随机收集了一半的数据实例以生成树,这将防止过度拟合,子采样将在每次boosting迭代中发生一次。

colsample_bytree

每棵树随机采样的列数占比

必填

Double

0.8

(0,1]

用来控制每棵随机采样的列数的占比(每一列是一个特征)。 我们一般设置成0.8左右, 典型值:0.5-1范围: (0,1]

tree_method

树构造算法

必填

String

"auto"

可选择"auto",“hist”,“approx”

auto:使用启发式方法选择最快的方法, hist: 更快的直方图优化的近似贪婪算, approx:使用分位数草图和梯度直方图的近似贪婪算法

grow_policy

添加节点方式

必填

String

"depthwise"

仅在tree_method为hist的时候生效,可选择: “depthwise”, “lossguide”

 depthwise:

在最靠近根的节点处拆分,

lossguide: 在损耗变化最大的节点处拆分

max_bins

最大箱数

必填

Integer

256

仅在tree_method为hist的时候生效,[1, Int. MaxValue)

用于存储连续特征的最大不连续回收箱数,增加此数目可提高拆分的最佳性,但需要增加计算时间。

single_precision_histogram

是否单精度

必填

Boolean

单选:是,否

仅在tree_method设置为hist时使用

false:双精度

true: 单精度

scale_pos_weight

正负样本不均衡调节权重

必填

Double

1

>0

在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。通常可以将其设置为负样本的数目与正样本数目的比值.

lambda

L2正则化项

必填

Double

1

>= 0

关于权重的L2正则化项。增加此值将使模型更加保守。

alpha

L1正则化项

必填

Double

0

>=0

关于权重的L1正则化项。增加此值将使模型更加保守。

eval_metric

评估指标

必填

String

根据优化目标默认

可选择[“logloss”,“error”]

logloss:对数损失; error:分类错误率

base_score

初始预测分数

必填

Double

0.5

>0

所有实例的初始预测分数,全局偏差. 在迭代次数少的情况下,可加快收敛速度,对于足够数量的迭代,更改此值不会产生太大影响

num_round

迭代次数

必填

Int

100

[1, Int. MaxValue]

算法的迭代次数(树的数量)

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置 

        XGBoost分类的属性设置如图所示

XGBoost分类属性设置

        前端可配置属性如图所示,评估指标即算法的损失函数,有对数损失和分类错误率两种;学习率,树的最大深度,最小叶子节点样本权重和,子采样率,最小分裂损失,每棵树随机采样的列数占比,L1正则化项和L2正则化项都是用来防止算法过拟合。当子节点样本权重和不大于所设的最小叶子节点样本权重和时不对该节点进行进一步划分。最小分裂损失指定了节点分裂所需的最小损失函数下降值。添加节点方式、最大箱数、是否单精度,这三个参数是当树构造方法是为hist的时候,才生效。参数的具体意义参考算子属性说明表格。

(3)算子的运行

        XGBoost分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接XGBoost分类算子,右击算子,点击运行,得到XGBoost分类模型。

运行XGBoost分类算子获得XGBoost分类模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

XGBoost分类模型算子流

        右击模型,查看模型的模型信息

XGBoost分类模型信息

        模型的运行结果如图所示

XGBoost分类模型运行结果

        模型的评估结果如图所示

XGBoost分类模型评估结果

11.5 随机森林分类

1.算子介绍

        随机森林是一种常用的分类和回归方法。它是一种Bagging的模型聚合方法。它内部集成了大量的决策树模型。每个模型都会选取一部分特征和一部分训练样本。最终由多个决策树模型来共同决定预测值。随机森林算法可以充分利用集群的性能,提高最终聚合模型的精度,并且大大改善模型的过拟合问题。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

max_depth

树的最大深度

必填

Int

5

>=0且<=30

树的最大深度:深度0表示1叶节点; 深度1表示1个内部节点+ 2个叶节点

max_bins

连续型属性划分最大分桶数连续型属性划分最大分桶数

必填

Int

32

>=2

用于离散连续特性和选择如何在每个节点上分割特性的最大容器数

min_instances_per_node

最小实例数

必填

Int

1

>=1

每个子节点在分割后必须拥有的最小实例数,

min_infoGain

最小信息增益

必填

double

0.0

>=0.0

在树节点上考虑分割的最小信息增益

feature_subset_strategy

树节点拆分的策略

必填

String

auto

单选:auto,all,onethird,sqrt,log2,选择n时,则由用户输入具体>0的数值。

“auto”:自动选择,如果子树个数为1时,则使用全部特征。如果子树个数> 1时(森林),则设置为sqrt(特征数量);“all”:使用所有特征;“onethird”:使用1/3的特征;“sqrt”:使用sqrt(特征数量);“log2”:使用log2(特征数量);“n”:当n在范围(0,1.0]时,为n*特征数。当n在范围(1,+∞)时,为特征数和n值两个之间的最小值。

num_trees

树的数量

必填

Int

20

>=1

要训练的树数

subsampling_rate

子树的训练比例

必填

Double

1.0

(0,1]

用于学习每个决策树的训练数据的一部分,范围。(默认= 1.0)

Wight

权重列

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作。

(2)算子属性设置

        随机森林分类的属性设置如图所示

随机森林分类属性设置

        前端可配置属性如图所示,树的最大深度,最大容器数,最小实例数,最小信息增益都是用来控制构建随机森林时树的分裂程度。子树的训练比例指,在学习每个决策树时所用训练数据的比例。树节点拆分策略为树的每个节点拆分时要考虑的特征数,各选项的具体意义见算子的属性说明表格。

(3)算子的运行

        随机森林分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接随机森林分类算子,右击算子,点击运行,得到随机森林分类模型。

运行随机森林分类算子获得随机森林分类模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

随机森林分类模型算子流

        右击模型,查看模型的模型信息

随机森林分类模型信息

        模型的运行结果如图所示

随机森林分类器型运行结果

        模型的评估结果如图所示

随机森林分类器型评估结果

11.6 朴素贝叶斯分类

1.算子介绍

        朴素贝叶斯是一组基于贝叶斯定理的简单概率多类分类器,每对特征之间具有强(朴素)独立性假设。朴素贝叶斯通过计算了给定每个标签的每个特征的条件概率分布来建立模型。朴素贝叶斯模型通过应用贝叶斯定理计算给定观测值的每个标签的条件概率分布来进行预测。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

smoothing

平滑参数

必填

Double

1.0

>=0

平滑参数默认值为1.0

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        朴素贝叶斯的属性设置如图所示

朴素贝叶斯分类属性设置

(3)算子的运行

        朴素贝叶斯为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接朴素贝叶斯器算子,右击算子,点击运行,得到朴素贝叶斯模型。

运行朴素贝叶斯算子获得朴素贝叶斯模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

朴素贝叶斯模型算子流

        右击模型,查看模型的模型信息

朴素贝叶斯模型信息

        模型的运行结果如图所示

朴素贝叶斯模型运行结果

        模型的评估结果如图所示

朴素贝叶斯模型评估结果

11.7 支持向量机分类

1.算子介绍

        支持向量机是一个功能强大且能有效防止过拟合的机器学习算法。它通过在高维空间中构造超平面或者超平面集合。通过对核函数的选择,支持向量机不仅可以进行线性划分,还可以支持非线性划分。

2.算子类型

        机器学习/分类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

kernel_type

核函数类型

必选

String

linear

单选:"linear", "rbf", "polynomial", "sigmoid"

核函数类型

ratio

抽样比例

必选

Double

0.1

>0 且<=1

抽样比例

group_num

子模型个数

必选

Integer

10

>=1

子模型个数

c

惩罚因子

必选

Double

1.0

>0

惩罚因子

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作。

(2)算子属性设置

        当选择线性核函数时,支持向量机的属性设置如图所示

线性核函数支持向量机属性设置

        核函数将原始特征空间映射为更高维的空间,在原始空间中不可分的数据在高维空间中可能变成线性可分。容忍度因子C即惩罚因子,C越大,容易出现过拟合;C越小,容易出现欠拟合。提前退出次数为:训练结束前有多少次迭代的数据未发生变化,则训练提前停止。

(3)算子的运行

        支持向量机为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接支持向量机算子,右击算子,点击运行,得到支持向量机模型。

运行支持向量机算子获得支持向量机模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

支持向量机模型算子流

        右击模型,查看模型的模型信息

支持向量机模型信息

        模型的运行结果如图所示

支持向量机模型运行结果

        模型的评估结果如图所示

支持向量机模型评估结果

11.8 多层感知机分类

1.算子介绍

        多层感知是一种前馈人工神经网络模型,其将输入的多个数据集映射到单一的输出的数据集上,多层感知机层与层之间是全连接的,最底层是输入层,中间是隐藏层,最后是输出层。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

layers

隐藏层数设置(逗号分隔的整数)

必填

List<String>

逗号分隔的整型

从输入层到输出层的层数。用逗号分隔的整数,例如780,100,10表示780个输入,100个神经元的隐藏层和10个神经元的输出层

solver

优化算法

必选

String

l-bfgs

单选:l-bfgs gd

优化算法。支持选项:“l-bfgs”/“gd”默认l-bfgs

max_iteration

最大迭代次数

必填

Int

100

>0

最大迭代次数

tolerance

收敛偏差

必填

Double

1E-6

>= 0

收敛偏差

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作。

(2)算子属性设置

        当优化算法为拟牛顿法时,多层感知机的属性设置如图所示

多层感知机分类算子属性设置

        算子将非数值型Feature转换为数值型,且自动计算输入层神经元个数和输出层神经元个数,用户只需设置隐藏层神经元个数,各隐藏层之间用逗号分隔。

(3)算子的运行

        多层感知机为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接多层感知机算子,右击算子,点击运行,得到多层感知机模型。

运行多层感知机获得多层感知机模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

多层感知机模型算子流

        右击模型,查看模型的模型信息

多层感知机模型信息

        模型的运行结果如图所示

多层感知机模型运行结果

        模型的评估结果如图所示

图4.5.1.8-6 多层感知机模型评估结果

11.9 LightGBM分类

1.算子介绍

        LightGBM属于Boosting集合模型中的一种,它和XGBoost一样是对GBDT的高效实现。LightGBM在很多方面会比XGBoost表现更为优秀。它有以下优势:更快的训练效率、低内存使用、更高的准确率、支持并行化学习、可处理大规模数据。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

objective

学习目标

必填

String

multiclass

binary,multiclass,multiclassova

二分类、多分类、one-vs-all二分类

boosting_tye

基学习器

必填

String

gbdt

gbdt,rf,dart,goss

gbdt:梯度提升数,rf:随机森林,dart:dropout+mart,goss:单边梯度重采样

num_iterations

迭代次数

必填

Integer

100

[1, Int.MaxValue]

迭代次数

learning_rate

学习率

必填

Double

0.1

(0,1]

学习率

max_depth

最大深度

必填

Integer

-1

[Int.MinValue, Int.MaxValue]

树模型最大深度的限制,当数据量较小时,用来处理过拟合,树仍然通过leaf-wise生长,<=0意味着没有限制

num_leaves

叶子数量

必填

Integer

31

[2, Int.MaxValue]

叶子数量

min_sum_hessian_in_leaf

最小叶子节点Hessian和

必填

Double

1e-3

[0, Int.MaxValue]

可以防止过拟合

bagging_fraction

Bagging比例

必填

Double

1.0

(0,1]

可以在不进行重采样的情况下随机选择部分数据来加速训练,为了启用bagging。rf时这个参数需要小于1,且bagging_freq > 0。

bagging_freq

Bagging频率

必填

Integer

0

[0, Int.MaxValue]

0意味着关闭bagging, k意味着k次迭代进行一次bagging,此外如果要用bagging,bagging_fraction必须同时小于1.0。

bagging_seed

Bagging种子

必填

Integer

3

>0

Bagging种子。

lambda_l2

L2正则

必填

Double

0

>= 0

关于权重的L2正则化项。增加此值将使模型更加保守。

lambda_l1

L1正则

必填

Double

0

>=0

关于权重的L1正则化项。增加此值将使模型更加保守。

feature_fraction

特征采样比例

必填

Double

1.0

(0.0,1.0]

如果该参数小于1.0, 在每个迭代,lightgbm会随机选择部分特征进行训练,加速训练,防止过拟合

early_stopping_round

提前终止迭代

必填

Integer

0

>=0

如果一个验证集的metric在过去的 early_stopping_round轮次中没有提升则终止训练,<=0意味着关闭

max_bin

最大箱数

必填

Integer

255

(0,infinite)

较少的箱数可能会降低精度,但是会避免过拟合

generate_missing_lebels

补齐缺失标签

必填

Boolean

单选:是,否

补齐缺失标签

is_provide_training_metric

输出训练metric结果

必填

Boolean

单选:是,否

训练时提供metric结果

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        LightGBM分类的属性设置如图所示

LightGBM分类属性设置

(3)算子的运行

        LightGBM分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接LightGBM分类算子,右击算子,点击运行,得到LightGBM分类模型。

运行LightGBM分类算子获得LightGBM分类模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

LightGBM分类模型算子流

        右击模型,查看模型的模型信息

LightGBM分类模型信息

        模型的运行结果如图所示

LightGBM分类模型运行结果

        模型的评估结果如图所示

LightGBM分类模型评估结果

11.10 因子分解机分类

1.算子介绍

        因子分解机是一种基于矩阵分解的机器学习算法,可以解决特征组合以及高维稀疏矩阵问题的强大的机器学习算法,首先是特征组合,通过对两两特征组合,引入交叉项特征,提高模型得分;其次是高维灾难,通过引入隐向量(对参数矩阵进行矩阵分解),完成对特征的参数估计。目前FM算法是推荐领域被验证的效果较好的推荐方案之一。

2.算子类型

        机器学习/分类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

solver

优化求解算法

必选

String

adamW

单选:adamW,gd

优化求解算法

bias

是否拟合截距

必选

Boolean

单选:是,否

是否拟合截距,即0次项

one_way_interaction

是否拟合一次项

必选

Boolean

单选:是,否

是否拟合一次项

dimension

设置因子维度

必选

Int

8

>0

因子维度

reg_params

L2正则化参数

必选

Double

0.01

>0

L2正则化系数

max_itert

最大迭代次数

必选

Int

100

>0

最大迭代次数

init_stdev

设置初始系数的标准差

必选

Double

0.05

>0.0

设置初始系数的标准差

step_size

学习率

必选

Double

0.01

>0.0

学习率

tolerance_conver_iter

迭代的收敛误差

必选

Double

1E-6

>0.0

迭代的收敛误差

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        当优化求解算法选择adamW时,因子分解机分类算子的属性设置如图所示

优化求解算法选择adamW时因子分解机属性设置

        adamW(Adam Weight Decay Regularization):Adam可以看作是RMSprob和动量SGD的结合,目的在于抑制震荡加速收敛。 Adamw则是在Adam的更新策略中采用了计算整体损失函数的梯度来进行更新而不是只计算不带正则项部分的梯度进行更新之后再进行权重衰减。

        当优化求解算法选择gd时,因子分解机的属性设置如图所示

优化求解算法选择GD时因子分解机属性设置

        GD (Gradient Descent): 最为经典的凸优化优化器,通过loss反向传导计算参数的梯度,沿着负梯度的方向更新参数。

(3)算子的运行

        因子分解机分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。为了训练得到更好的模型,训练数据需要使用标准化算子或者归一化算子进行处理。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接因子分解机分类算子,右击算子,点击运行,得到因子分解机分类模型。

运行因子分解机分类算子获得模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

因子分解机模型算子流

        右击模型,查看模型的模型信息

因子分解机模型信息

        模型的运行结果如图所示

因子分解机模型运行结果

        模型的评估结果如图所示

因子分解机模型评估结果

11.11 AdaBoost分类

1.算子介绍

        AdaBoost是一种Boosting集成方法,主要思想就是将弱的基学习器提升(boost)为强学习器,根据上轮迭代得到的学习器对训练集的预测表现情况调整训练集中的样本权重, 然后据此训练一个新的基学习器,最终的集成结果是多个基学习器的组合。

2.算子类型

        机器学习/分类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

max_depth

树的最大深度

必填

Int

5

>=0且<=30

树的最大深度

max_bins

连续型属性划分最大分桶数

必填

Int

32

>=2

连续型属性划分最大分桶数

min_instances_per_node

最小实例数

必填

Int

1

>=1

最小实例数

min_infoGain

最小信息增益

必填

Double

0.0

>=0.0

在树节点上考虑分割的最小信息增益

feature_subset_strategy

树节点拆分的策略

必填

String

auto

单选:auto,all,onethird,sqrt,log2,选择n时,则由用户输入具体>0的数值。

“auto”:自动选择,如果子树个数为1时,则使用全部特征。如果子树个数> 1时(森林),则设置为sqrt(特征数量);“all”:使用所有特征; “onethird”:使用1/3的特征;“sqrt”:使用sqrt(特征数量);“log2”:使用log2(特征数量); “n”:当n在范围(0,1.0]时,为n*特征数。当n在范围(1,+∞)时,为特征数和n值两个之间的最小值

subsampling_rate

子树的训练比例

必填

Double

1.0

(0,1]

用于学习每个决策树的训练数据的比例

max_iter

迭代次数

必填

Int

10

>0

迭代次数,决定Adaboost子树的数量

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

(1)算子初始化

        参考公共功能算子初始化操作。

(2)算子属性设置

        AdaBoost分类算子的属性设置如图所示

AdaBoost分类属性设置

        前端可配置属性如图所示,树的最大深度,连续型属性划分最大分桶数,最小实例数,最小信息增益都是用来控制构建子决策树时的分裂程度。子树的训练比例指,在学习每个决策树时所用训练数据的比例。子树的训练比例都是为了防止过拟合。树节点拆分策略为树的每个节点拆分时要考虑的特征数,各选项的具体意义见算子的属性说明表格。

(3)算子的运行

        AdaBoost分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接AdaBoost分类算子,右击算子,点击运行,得到AdaBoost分类模型。

运行AdaBoost分类算子获得AdaBoost分类模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

AdaBoost分类模型算子流

        右击模型,查看模型的模型信息

AdaBoost分类模型信息

        模型的运行结果如图所示

AdaBoost分类模型运行结果

        模型的评估结果如图所示

AdaBoost分类模型评估结果

11.12 KNN分类

1.算子介绍

        K-近邻算法是一种惰性学习模型(lazy learning),也称为基于实例学习模型,这与勤奋学习模型(eager learning)不一样。

        勤奋学习模型在训练模型的时候会很耗资源,它会根据训练数据生成一个模型,在预测阶段直接带入数据就可以生成预测的数据,所以在预测阶段几乎不消耗资源。

        惰性学习模型在训练模型的时候不会估计由模型生成的参数,他可以即刻预测,但是会消耗较多资源,例如KNN模型,要预测一个实例,需要求出与所有实例之间的距离。

        K-近邻算法是一种非参数模型,参数模型使用固定的数量的参数或者系数去定义模型,非参数模型并不意味着不需要参数,而是参数的数量不确定,它可能会随着训练实例数量的增加而增加,当数据量大的时候,看不出解释变量和响应变量之间的关系的时候,使用非参数模型就会有很大的优势,而如果数据量少,可以观察到两者之间的关系的,使用相应的模型就会有很大的优势。

        存在一个样本集,也就是训练集,每一个数据都有标签,也就是我们知道样本中每个数据与所属分类的关系,输入没有标签的新数据后,新数据的每个特征会和样本集中的所有数据对应的特征进行比较,算出新数据与样本集其他数据的欧几里得距离,这里需要给出K值,这里会选择与新数据距离最近的K个数据,其中出现次数最多的分类就是新数据的分类,一般k不会大于20。

        KNN在做回归和分类的主要区别,在于最后做预测时候的决策不同。在分类预测时,一般采用多数表决法。在做回归预测时,一般使用平均值法。

        多数表决法:分类时,哪些样本离我的目标样本比较近,即目标样本离哪个分类的样本更接近。

        平均值法: 预测一个样本的平均身高,观察目标样本周围的其他样本的平均身高,我们认为平均身高是目标样本的身高。

2.算子类型

        机器学习/分类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

K值

必填

Int

5

>=2

K近邻的K值

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_confusion_matrix

是否显示训练数据混淆矩阵

必填

Boolean

单选:是,否

是否显示训练数据混淆矩阵

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        KNN分类算子属性设置如图所示

KNN分类算子属性设置

(3)算子的运行

        KNN分类为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等);然后接类型算子,设置Feature列和Label列,再接KNN算子,右击算子,点击运行,得到KNN分类模型。

运行KNN分类算子获得KNN分类模型

        模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的分类结果进行评估。

KNN分类模型算子流

        右击模型可以查看模型的模型信息

模型信息

        模型的运行结果如图所示

KNN分类模型运行结果

        模型的评估结果如图所示

KNN分类模型评估结果


   为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

Sentosa_DSML社区版https://sentosa.znv.com/https://sentosa.znv.com/

Sentosa_DSML算子流开发视频

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2159592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Rustrover2024.2 正式发布:个人非商用免费,泰裤辣

如果这个世界本身 已经足够荒唐 那究竟什么才能算是疯狂 爱情就是这样 一旦错过了 就会有另一个人代替 我们知道 jetbrains 在今年的早些时候正式为 rust 语言发布了专用的 IDE &#xff0c;也就是 rustrover。如今 rustrover 也正式跻身为 jetbrains IDE 系列的一员猛将。…

Dynamic Connected Networks for Chinese Spelling Check(ACL2021)

Dynamic Connected Networks for Chinese Spelling Check(ACL2021) 一&#xff0e;概述 文中认为基于bert的非自回归语言模型依赖于输出独立性假设。不适当的独立性假设阻碍了基于bert的模型学习目标token之间的依赖关系&#xff0c;从而导致了不连贯的问题。为些&#xff0c…

如何使用GLib的单向链表GSList

单向链表是一种基础的数据结构&#xff0c;也是一种简单而灵活的数据结构&#xff0c;本文讨论单向链表的基本概念及实现方法&#xff0c;并着重介绍使用GLib的GList实现单向链表的方法及步骤&#xff0c;本文给出了多个实际范例源代码&#xff0c;旨在帮助学习基于GLib编程的读…

docker如何升级MySQL为最新版本

今天安全扫描发现MySQL存在漏洞&#xff0c;不用想别的升级到最新版。本篇文章有两个目的&#xff0c;1&#xff09;为自己做一个记录&#xff0c;下次升级的时候不用再浪费时间查资料&#xff1b;2&#xff09;给大家一点帮助&#xff1b; 因为我是docker部署&#xff0c;所以…

docker 创建showdoc服务 showdoc容器部署教程

1. 下载最新版本镜像 # 按照最新版本 docker pull star7th/showdoc 2. 创建映射文件夹&#xff1a; # 创建文件夹 mkdir -p /data/showdoc_data# 可写权限 chmod 777 /data/showdoc_data 3.创建容器命令&#xff1a; docker run -d --name showdoc --userroot --privileged…

分享一个vue+spring的前后端项目

管理员页面 用户界面 后面的一部分 后端代码

leetcode第二十六题:删去有序数组的重复项

给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数量为 k &#xff0c;你…

力扣题解1014

大家好&#xff0c;欢迎来到无限大的频道。 今日继续给大家带来力扣题解。 题目描述&#xff08;中等&#xff09;&#xff1a; 最佳观光组合 给你一个正整数数组 values&#xff0c;其中 values[i] 表示第 i 个观光景点的评分&#xff0c;并且两个景点 i 和 j 之间的 距离…

C++ | Leetcode C++题解之第432题全O(1)的数据结构

题目&#xff1a; 题解&#xff1a; class AllOne {list<pair<unordered_set<string>, int>> lst;unordered_map<string, list<pair<unordered_set<string>, int>>::iterator> nodes;public:AllOne() {}void inc(string key) {if (…

R语言 基础笔记 2

起因&#xff0c; 目的: 偶然看到一个新的教程&#xff0c; 有些知识点&#xff0c;以前没见过&#xff0c;不熟悉&#xff0c; 现在遇到了&#xff0c;记录一下。 基础数据类型 2L&#xff0c; 表示整数 3 ^ 2, 表示求幂 class(a) 查看 类 typeof(a) 查看基本数据类型 s…

C/C++语言基础--C++构造函数、析构函数、深拷贝与浅拷贝等等相关知识讲解

本专栏目的 更新C/C的基础语法&#xff0c;包括C的一些新特性 前言 周末休息了&#xff0c;没有更新&#xff0c;请大家见谅哈&#xff1b;构造函数、析构函数可以说便随着C每一个程序&#xff0c;故学构造函数、析构函数是必要的&#xff1b;C语言后面也会继续更新知识点&am…

Linux 环境(rhel6.4)oracle11.2.0.1升级到11.2.0.4

停止监听 [oraclerhel64 ~]$ lsnrctl stop 关闭数据库 [oraclerhel64 ~]$ sqlplus / as sysdba SYSNKYYDB>shutdown immediate; 上传软件包并解压 [rootrhel64 ~]# mkdir /u01/upgrade [rootrhel64 ~]# chown -R oracle:oinstall /u01/upgrade/ [oraclerhel64 upgrad…

MySQL(学习笔记)(02)(进阶篇)

P1 存储引擎 MySQL的体系结构 存储引擎简介 存储引擎的选择 P2 索引&#xff08;重要&#xff09; 索引概述 索引结构 二叉树 B树&#xff08;多路平衡查找&#xff09; B树 hash 总结 索引分类 思考题 索引语法 SOL性能分析 索引使用 索引设计原则 P3 SQL优化 P4 视图/存储过…

前端vue-3种生命周期,只能在各自的领域使用

上面的表格可以简化为下面的两句话&#xff1a; setup是语法糖&#xff0c;下面的两个import导入是vue3和vue2的区别&#xff0c;现在的vue3直接导入&#xff0c;比之前vue2简单 还可以是导入两个生命周期函数

基于Nginx搭建点播直播服务器

实现直播和点播离不开服务器⽀持&#xff0c;可以使用开源的NGINX服务器搭建直播和点播服务。 当然&#xff0c;NGINX本身是不⽀持视频的&#xff0c;需要为NGINX增加相应的RTMP模块进行支持。 1、下载nginx和rtmp模块 # nginx wget ht tp://nginx.org/download/nginx-1.18.…

一篇讲完HTML核心内容

一、HTML 1、 HTML概念 网页&#xff0c;是网站中的一个页面&#xff0c;通常是网页是构成网站的基本元素&#xff0c;是承载各种网站应用的平台。通俗的说&#xff0c;网站就是由网页组成的。通常我们看到的网页都是以htm或html后缀结尾的文件&#xff0c;俗称 HTML文件。 2、…

公安局党建平台建设方案和必要性-———未来之窗行业应用跨平台架构

一、建设必要性 1. 适应时代发展需求 - 利用信息技术提升党建工作的效率和覆盖面&#xff0c;符合数字化时代的发展趋势。 2. 提高学习教育效果 - 打破时间和空间限制&#xff0c;让党员能够随时随地获取学习资源&#xff0c;进行自主学习。 3. 加强党组织管理 …

黑马智数Day3

渲染基础Table列表 封装接口&#xff1a; export function getCardListAPI(params) {return request({url: /parking/card/list,params}) } 具体实现&#xff1a; import { getCardListAPI } from /apis/cardexport default {data() {return {// 请求参数params: {page: 1,pa…

【计算机网络 - 基础问题】每日 3 题(十九)

✍个人博客&#xff1a;Pandaconda-CSDN博客 &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/fYaBd &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞&#x1f44d;收藏&…

基于Spark框架实现LightGBM模型

基于Spark框架实现LightGBM模型 原生的Spark MLlib并不支持LightGBM算法的实现&#xff0c;但SynapseML提供了一种解决方案&#xff0c;使得我们可以在Spark中调用LightGBM。LightGBM是一种基于梯度提升决策树的高效机器学习框架&#xff0c;它专门用于创建高质量的决策树算法…