《深度学习》卷积神经网络CNN 实现手写数字识别

news2024/11/15 13:30:11

目录

一、卷积神经网络CNN

1、什么是CNN

2、核心

3、构造

二、案例实现

1、下载训练集、测试集

代码实现如下:

2、展示部分图片

运行结果:

3、图片打包

运行结果:

4、判断当前使用的CPU还是GPU

5、定义卷积神经网络

运行结果:

6、训练、测试模型

运行结果:


以下代码类似于前面所说的神经网络实现手写数字识别,可参考下列博客。

《深度学习》PyTorch 手写数字识别 案例解析及实现 <下>icon-default.png?t=O83Ahttps://blog.csdn.net/qq_64603703/article/details/142282105?fromshare=blogdetail&sharetype=blogdetail&sharerId=142282105&sharerefer=PC&sharesource=qq_64603703&sharefrom=from_link

一、卷积神经网络CNN

1、什么是CNN

        卷积神经网络是一种深度学习模型,主要应用于图像和视频处理任务。它的设计灵感来源于生物视觉系统的工作原理。

2、核心

        核心是卷积层,这是一种通过在输入数据上应用滤波器(也称为卷积核)来提取特征的操作。卷积层的输出是一系列的特征图每个特征图表示一种特定的图像特征,例如边缘、纹理等。这种特征提取的方式可以捕捉到图像中的局部模式,并且在不同位置共享参数,从而提高了模型的效率和泛化能力。

3、构造

        CNN还包括池化层,用于减小特征图的尺寸降低计算复杂度,增加模型的平移不变性。

        卷积神经网络还可以包含多个卷积层和池化层的堆叠,以及全连接层(Fully Connected Layer)用于进行分类或回归等任务。

二、案例实现

1、下载训练集、测试集

        通过现有的库调用其用法直接去下载现成的手写数字的数据集,这些手写数字集共有70000张图片,这些图片都有其对应的标签,大小为28*28,灰度图,数字居中,直接使用即可。

        将这70000张图片,60000张当做训练集,10000张当做测试集。

代码实现如下:
import torch
print(torch.__version__)

"""MNIST包含70,000张手写数字图像:60,000张用于训练,10,000张用于测试。
图像是灰度的,28x28像素的,并且居中的,以减少预处理和加快运行。"""

from torch import nn  # 导入神经网络模块
from torch.utils.data import DataLoader  # 数据包管理工具,打包数据,
from torchvision import datasets   # 封装了很多与图像相关的模型,数据集
from torchvision.transforms import ToTensor   # 数据转换,张量,将其他类型的数据转换为tensor张量,numpy arrgy,

"""下载训练数据集,图片+标签"""
training_data = datasets.MNIST(   # 跳转到函数的内部源代码,pycharm 按下ctrl +鼠标点击
    root='data',   # 表述下载的数据存放的根目录
    train=True,   # 表示下载的是训练数据集,如果要下载测试集,更改为False即可
    download=True,   # 表示如果根目录有该数据,则不再下载,如果没有则下载
    transform=ToTensor()   # 张量,图片是不能直接传入神经网络模型
    # 表示制定一个数据转换操作,将下载的图片转换为pytorch张量,因为pytorch只能处理张量tensor类型的数据
)

test_data = datasets.MNIST(
    root='data',
    train=False,
    download=True,
    transform=ToTensor()  # Tensor是在深度学习中提出并广泛应用的数据类型,它与深度学习框架(如 PyTorch、TensorFlo
)  # NumPy 数组只能在CPU上运行。Tensor可以在GPU上运行,这在深度学习应用中可以显著提高计算速度。

print(len(training_data))
print(len(test_data))

        实现结果就是当前代码的目录多出了一个data文件,里面存放的就是下载好的手写数字的图片,打印内容为下载的图片个数。

2、展示部分图片

        取出9张图片,将其展示在画布上

from matplotlib import pyplot as plt   # 导入绘图库
figure = plt.figure()   # 设置一个空白画布
for i in range(9):
    img,label = training_data[i+59000]   # 提取第59000张图片开始,共9张,返回图片及其对应的标签值

    figure.add_subplot(3,3,i+1)   # 在画布创建3行3列的小窗口,通过遍历的值i来确定每个画布展示的图片
    plt.title(label)   # 设置每个窗口的标题,设置标签为上述返回的标签值
    plt.axis('off')   # 取消画布中的坐标轴的图像
    plt.imshow(img.squeeze(),cmap='gray')   # plt.imshow()将NumPy数组data中的数据显示为图像,并在图形窗口中,
    a = img.squeeze()   # img.squeeze()从张量img中去掉维度为1的。如果该维度的大小不为1,则张量不会改变。
plt.show()
运行结果:

3、图片打包

        因为图片的数量太多,将其一张一张的放入GPU进行计算太耗费时间,而且还浪费资源,所以将64张图片打包成一份,将这一整个数据包传入GPU使其计算,这样大大增加了运行的效率。

train_dataloader = DataLoader(training_data,batch_size=64)  # 调用上述定义的DataLoader打包库,将训练集的图片和标签,64张图片为一个包,
test_dataloader = DataLoader(test_data,batch_size=64)   # 将测试集的图片和标签,每64张打包成一份
for x,y in test_dataloader:
    # x是表示打包好的每一个数据包,其形状为[64,1,28,28],64表示批次大小,1表示通道数为1,即灰度图,28表示图像的宽高像素值
    # y表示每个图片标签
    print(f"shape of x[N,C,H,W]:{x.shape}")   # 打印图片形状
    print(f"shape of y:{y.shape}{y.dtype}")   # 打印标签的形状和数据类型
    break  # 跳出并终止循环,表示只遍历一个包的数据情况
运行结果:

4、判断当前使用的CPU还是GPU

"""判断当前设备是否支持GPU,其中mps是苹果m系列芯片的GPU"""  # 返回cuda,mps,cpu, m1,m2集显CPU+GPU RTX3060
device = "cuda" if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else "cpu"
print(f"Using {device} device")  # 字符串的格式化。CUDA驱动软件的功能:pytorch能够去执行cuda的命令,cuda通过GPU指令集
# 神经网络的模型也需要传入到GPU,1个batchsize的数据集也需要传入到GPU,才可以进行训练。

5、定义卷积神经网络

"""定义神经网络"""
class CNN(nn.Module):   # 继承nn算法中的Module
    def __init__(self):   # 这里输入大小为(1,28,28)
        super(CNN,self).__init__()
        self.conv1 = nn.Sequential(   # 第一层卷积, 将多个层组合成一起。
            nn.Conv2d(    # 二维卷积成,2d一般用于图像,3d用于视频数据(多一个时间维度),1d一般用于结构化的序列数据
                in_channels=1,    # 输入图像通道个数,1表示灰度图(确定了卷积核 组中的个数),
                out_channels=16,   # 输出多少个特征图,也可表示卷积核的个数
                kernel_size=5,   # 卷积核大小,5*5
                stride=1,   # 卷积核移动的步长
                padding=2,   # 边缘填充层数
            ),   # 输出的特征图为(16*28*28)
            nn.ReLU(),   # 设置激活层,引入非线性,增强表达能力,relu层,不会改变特征图的大小(16*28*28)
            nn.MaxPool2d(kernel_size=2),   # 池化层,大小为2*2,进行最大池化,压缩图像大小,输出结果为:(16*14*14)
        )
        self.conv2 = nn.Sequential(   # 第二层卷积, 输入(16*14*14),定义两个二维卷积层,用于连续卷积
            nn.Conv2d(16,32,5,1,2),  # 输出(32*14*14)
            nn.ReLU(),   # relu层(32*14*14)
            nn.Conv2d(32,32,5,1,2),  # 输出(32*14*14)
            nn.ReLU(),    # (32,14,14)
            nn.MaxPool2d(2),   # 最大池化,输出(32*7*7)
        )
        self.conv3 = nn.Sequential(   # 输入(32*7*7)
            nn.Conv2d(32, 64, 5, 1, 2),  # (64*7*7)
            nn.ReLU(),  # 输出(64*7*7)
        )
        self.out = nn.Linear(64*7*7,10)   # 全连接层得到的结果

    def forward(self, x):   # 定义前向传播
        x = self.conv1(x)    # 对传入模型的图片数据进行第一层卷积处理
        x = self.conv2(x)
        x = self.conv3(x)   # 输出(64,64,7,7)
        x = x.view(x.size(0),-1)    # 重新调整张量的形状,即flatten操作,结果为:(batch_size,64*7*7)
        # x.size(0)表示获取第一个维度的大小,-1表示自动计算维度大小
        # x.view(x.size(0),-1)将张量x重新调整为两维张量,其中第一维的大小保持不变(即x.size(0)),而第二维的大小是自动计算的,以确保总元素数量与原始张量相同。
        output = self.out(x)
        return output

model = CNN().to(device)   # 将模型传入GPU
print(model)   # 打印模型的结构
运行结果:

6、训练、测试模型

def train(dataloader,model,loss_fn,optimizer):   # 导入参数,dataloader表示打包,数据加载器,model导入上述定义的神经网络模型,loss_fn表示损失值,optimizer表示优化器
    model.train()   # 模型设置为训练模式
    # 告诉模型,我要开始训练,模型中权重w进行随机化操作,已经更新w。在训练过程中,w会被修改的
    # #pytorch提供2种方式来切换训练和测试的模式,分别是:model.train()和 model.eval()。
    # 一般用法是:在训练开始之前写上model.train(),在测试时写上model.eval()。
    batch_size_num = 1
    for x,y in dataloader:    # 遍历打包的图片的每一个包中的每一张图片及其对应的标签,其中batch为每一个数据的编号
        x,y = x.to(device),y.to(device)   # 把训练数据集和标签传入cpu或GPU
        pred = model.forward(x)    # 模型进行前向传播,输入图片信息后得到预测结果,forward可以被省略,父类中已经对次功能进行了设置。自动初始化w权值
        loss = loss_fn(pred,y)     # 调用交叉熵损失函数计算损失值loss,输入参数为预测结果和真实结果,
        # Backpropaqation 进来一个batch的数据,计算一次梯度,更新一次网络
        optimizer.zero_grad()    # 梯度值清零,在反向传播之前先清除之前的梯度
        loss.backward()     # 反向传播,计算得到每个参数的梯度值w
        optimizer.step()    # 根据梯度更新权重w参数

        loss_value = loss.item()   # 从tensor数据中提取数据出来,tensor获取损失值
        if batch_size_num % 200 == 0:  # 判断遍历包的个数是否整除于200,用于将训练到的包的个数打印出来,整除200目的是节省资源
            print(f"loss:{loss_value:>7f}   [number: {batch_size_num}]")  # 打印损失值及其对应的值,损失值最大宽度为7,右对齐
        batch_size_num += 1    # 每遍历一个包增加一次,以达到显示出来遍历的包的个数

def test(dataloader,model,loss_fn):  # 输入参数打包的图片、训练好的模型、以及损失值
    size = len(dataloader.dataset)   # 返回测试数据集的样本总数
    num_batches = len(dataloader)   # 返回当前dataloader配置下的批次数
    model.eval()    # 表示此为模型测试,w就不能再更新。
    test_loss,correct = 0, 0   # 设置总损失值初始化为0,正确预测结果初始化为0
    with torch.no_grad():    # 一个上下文管理器,关闭梯度计算。当你确认不会调用Tensor.backward()的时候。这可以减少计算
        for x,y in dataloader:   # 遍历测试集中的每个包的每个图片及其对应的标签
            x,y = x.to(device),y.to(device)   # 将其传入gpu
            pred = model.forward(x)   # 图片数据进行前向传播
            test_loss += loss_fn(pred,y).item()    # test_loss是会自动累加每一个批次的损失值
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()  # pred.argmax(1) == y用于判断预测结果最大值对用的标签是否与真实值相同,然后将判断结果的bool值转变为浮点数并求和
            a = (pred.argmax(1) == y)   # dim=1表示每一行中的最大值对应的索引号,dim=0表示每一列中的最大值对应的索引号
            b = (pred.argmax(1) == y).type(torch.float)
    test_loss /= num_batches    # 总损失值除以打包的批次数,返回测试的每一个包的损失值的均值,能来衡量模型测试的好坏。
    correct /= size   # 平均的正确率
    print(f"Test result: \n Accuracy:{(100 * correct)}%, Avg loss:{test_loss}")  # 打印测试集测试结果
loss_fn = nn.CrossEntropyLoss()  # 创建交叉熵损失函数对象,因为手写字识别中一共有10个数字,输出会有10个结果
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)  # 创建一个优化器,SGD为随机梯度下降算法,学习率或者叫步长为0.0045


epochs = 8  # 设置训练的轮数为8轮,因为模型中设置了权重值的更新,所以重复训练会更新模型的权值
for i in range(epochs):
    print(f"Epoch {i+1}\n--------------------")
    train(train_dataloader,model,loss_fn,optimizer)
print('Done!!')
test(test_dataloader,model,loss_fn)   # 导入测试集进行测试
运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2159404.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)2.3-2.4

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第二周 深度卷积网络:实例探究(Deep convolutional models: case studies)2.3 残差网络(ResNets)(Residual Networks (ResNets))2.4 残差网络为什么有用&am…

武汉正向科技 格雷母线检测方式 :车检,地检

正向科技|格雷母线原理运用-车检,地检 地上检测方式 地址编码器和天线箱安装在移动站上,通过天线箱发射地址信号,地址解码器安装在固定站(地面)上,在固定站完成地址检测。 车上检测方式 地址编码器安装在…

【OpenCV】场景中人的识别与前端计数

1.OpenCV代码设计讲解 突发奇想,搞个摄像头,识别一下实验室里面有几个人,计数一下(最终代码是累加计数,没有优化),拿OpenCV来玩一玩 首先,还是优先启动电脑摄像头,本项…

react hooks--useCallback

概述 useCallback缓存的是一个函数,主要用于性能优化!!! 基本用法 如何进行性能的优化呢? useCallback会返回一个函数的 memoized(记忆的) 值;在依赖不变的情况下,多次定义的时候,返回的值是…

MySQL record 07 part

索引 注意,是排序,有序就会加快查找的速度。 优势: 劣势 索引会单独占用存储空间索引虽然可以提高排序和查找的速度,但同时也会降低更新、删除、新增数据的速度,因为MySQL此时既要更改表,也要维护更改表后…

ubuntu安装无线网卡驱动(非虚拟机版)

本文不是基于虚拟机,是双系统 太夸张了 实验室居然没网线 只有一个师兄留下来的无线网卡 装完了ubuntu结果没网 make都用不了 然后搜了下大概发现是没有预装gcc和make 参考如下 https://zhuanlan.zhihu.com/p/466440088 https://wwsk.lanzouj.com/iAj4t2ao46zc…

电脑配置不够,想玩老头环可以上ToDesk云电脑体验一下

最近,《艾尔登法环》游戏更新了好多新东西,让玩家特别兴奋。比如说,FromSoftware工作室一直在改进游戏,让游戏运行得更稳、更流畅。而且,《艾尔登法环:黄金树幽影》这个扩展包一出,游戏世界变得…

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘attribute‘

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 专栏介绍 在软件开发和日常使用中,BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…

调用JS惰性函数问题

第一次调用这个函数时 console.log(a) 会被执行,打印出 a,全局变量 a 被重定义并被赋予了新的函数,当再一次调用时,console.log(b) 被执行。 用处:因为各浏览器之间的行为差异,经常会在函数中包含了大量的…

Kafka技术详解[1]:简介与基础概念

目录 1. Kafka入门 1.1 概述 1.1.1 初识Kafka 1.1.2 消息队列 1.1.3 生产者-消费者模式 1.1.4 消息中间件对比 1.1.5 ZooKeeper 1. Kafka入门 1.1 概述 1.1.1 初识Kafka Kafka是由Scala和Java语言开发的高吞吐量分布式消息发布和订阅系统,也是大数据技术领…

《汇编语言》第14章——实验 14访问CMOS RAM

编程,以“年/月/日 时:分:秒”的格式,显示当前的日期、时间 assume cs:code data segment db 2024/09/23 00:00:00,$ data endscode segment start:mov ax,datamov es,axcall get_hms_funccall get_ymd_funcmov dh,12 ;dh中存放…

黑马头条day3-2 自媒体文章管理

前边还有一个 素材列表查询 没什么难度 就略过了 查询所有频道和查询自媒体文章也是和素材列表查询类似 就是普通的查询 所以略过了 文章发布 这个其实挺复杂的 一共三张表 一个文章表 一个素材表 一个文章和素材的关联表 区分修改与新增就是看是否存在id 如果是保存草稿…

实现一个基于nio的discard server

写在前面 源码 。 为了能够进一步的熟悉下nio相关的api操作,本文来实现一个基于nio的discard server。 discard server的意思是,server接收到来自client的一个消息之后,直接就将连接关闭,即discard。 1:正戏 1.1&…

MySQL深度探索:掌握触发器自动化与精细用户权限管理,提升数据库效能与安全

作者简介:我是团团儿,是一名专注于云计算领域的专业创作者,感谢大家的关注 座右铭: 云端筑梦,数据为翼,探索无限可能,引领云计算新纪元 个人主页:团儿.-CSDN博客 目录 前言&#x…

gitlab集成CI/CD,shell方式部署

目录 1.首先安装好gitlab和gitlab-runner,这两个,看我以往的教程 2.注册新的 Runner 3. 步骤 3.1 Enter the GitLab instance URL (for example, https://gitlab.com/): 3.2 Enter the registration token: 3.3 Enter a description for the runner: 3…

【2024.09】关于 UMLS 在支持大型语言模型提出的诊断生成中的作用

生物医学信息学杂志 链接:https://www.sciencedirect.com/science/article/abs/pii/S1532046424001254?via%3Dihub On the role of the UMLS in supporting diagnosis generation proposed by Large Language Models Author links open overlay panelMajid Afsh…

线上搭子小程序:随时随地找搭子!

搭子作为当下流行的一种社交方式,受到了年轻人的讨论关注,不管做什么都可以找不同的“搭子”。追剧、考试、健身、减肥、旅游等都可以找到志趣相投的搭子,满足年轻人的社交需求。 在互联网的发展下,年轻人找搭子也逐渐倾向于线上…

ubuntu22 解决docker无法下载镜像问题

参考在 Ubuntu 中安装 Docker_ubuntu安装docker-CSDN博客 安装docker完成后,运行如下命令验证 Docker 服务是否在运行: systemctl status docker 运行(sudo docker run hello-world)例子报错: 问题:Docker…

ubuntu内网穿透后在公网使用ssh登录

需求: 我有一台内网可以通过ssh 22端口访问的设备操作系统是ubuntu server我还有1台拥有公网IP的服务器,IP地址是 6.66.666.6666我想随时从其他网段通过ssh访问我的ubuntu server设备 实现: 工具准备:frp 网址:https…

一看就会!PS2024下载安装教程详解

PS2024下载方法: PS2024安装教程: 1、右击【PS2024.zip】,选择【解压到PS2024】 2、右击【Set-up.exe】,选择【以管理员身份运行】 3、点击右下角灰色的小文件夹图标,选择【更改位置】 4、选择安装路径后,…