OpenHarmony(鸿蒙南向开发)——小型系统内核(LiteOS-A)【Perf调测】

news2025/1/13 6:32:02

往期知识点记录:

  • 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总
  • 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~
  • 持续更新中……

基本概念

Perf为性能分析工具,依赖PMU(Performance Monitoring Unit)对采样事件进行计数和上下文采集,统计出热点分布(hot spot)和热路径(hot path)。

运行机制

基于事件采样原理,以性能事件为基础,当事件发生时,相应的事件计数器溢出发生中断,在中断处理函数中记录事件信息,包括当前的pc、当前运行的任务ID以及调用栈等信息。

Perf提供2种工作模式,计数模式和采样模式。

计数模式仅统计事件发生的次数和耗时,采样模式会收集上下文数据到环形buffer中,需要IDE进行数据解析生成热点函数与热点路径。

接口说明

OpenHarmony LiteOS-A内核的Perf模块提供下面几种功能,接口详细信息可以查看 API 参考。

表1 Perf模块接口说明

功能分类接口描述
开启/停止Perf采样LOS_PerfInit : 初始化Perf
LOS_PerfStart:开启采样
LOS_PerfStop:停止采样
配置Perf采样事件LOS_PerfConfig:配置采样事件的类型、周期等
读取采样数据LOS_PerfDataRead:读取采样数据到指定地址
注册采样数据缓冲区的钩子函数LOS_PerfNotifyHookReg:注册缓冲区水线到达的处理钩子
LOS_PerfFlushHookReg:注册缓冲区刷cache的钩子
  1. Perf采样事件的结构体为PerfConfigAttr,详细字段含义及取值详见  kernel\include\los_perf.h 。

  2. 采样数据缓冲区为环形buffer,buffer中读过的区域可以覆盖写,未被读过的区域不能被覆盖写。

  3. 缓冲区有限,用户可通过注册水线到达的钩子进行buffer溢出提醒或buffer读操作。默认水线值为buffer总大小的1/2。 示例如下:

    VOID Example_PerfNotifyHook(VOID)
    {
        CHAR buf[LOSCFG_PERF_BUFFER_SIZE] = {0};
        UINT32 len;
        PRINT_DEBUG("perf buffer reach the waterline!\n");
        len = LOS_PerfDataRead(buf, LOSCFG_PERF_BUFFER_SIZE);
        OsPrintBuff(buf, len); /* print data */
    }
    LOS_PerfNotifyHookReg(Example_PerfNotifyHook);
    c
  1. 若perf采样的buffer涉及到CPU跨cache,则用户可通过注册刷cache的钩子,进行cache同步。 示例如下:
    VOID Example_PerfFlushHook(VOID *addr, UINT32 size)
    {
        OsCacheFlush(addr, size); /* platform interface */
    }
    LOS_PerfNotifyHookReg(Example_PerfFlushHook);
    c

刷cache接口视具体的平台自行配置。

开发指导

内核态开发流程

开启Perf调测的典型流程如下:

  1. 配置Perf模块相关宏。 配置Perf控制宏LOSCFG_KERNEL_PERF,默认关,在kernel/liteos_a目录下执行 make update_config命令配置"Kernel->Enable Perf Feature"中打开:
配置项menuconfig选项含义设置值
LOSCFG_KERNEL_PERFEnable Perf FeaturePerf模块的裁剪开关YES/NO
LOSCFG_PERF_CALC_TIME_BY_TICKTime-consuming Calc Methods->By TickPerf计时单位为tickYES/NO
LOSCFG_PERF_CALC_TIME_BY_CYCLETime-consuming Calc Methods->By Cpu CyclePerf计时单位为cycleYES/NO
LOSCFG_PERF_BUFFER_SIZEPerf Sampling Buffer SizePerf采样buffer的大小INT
LOSCFG_PERF_HW_PMUEnable Hardware Pmu Events for Sampling使能硬件PMU事件,需要目标平台支持硬件PMUYES/NO
LOSCFG_PERF_TIMED_PMUEnable Hrtimer Period Events for Sampling使能高精度周期事件,需要目标平台支持高精度定时器YES/NO
LOSCFG_PERF_SW_PMUEnable Software Events for Sampling使能软件事件,需要开启LOSCFG_KERNEL_HOOKYES/NO
  1. 调用LOS_PerfConfig配置需要采样的事件。 Perf提供2种模式的配置,及3大类型的事件配置:

    2种模式:计数模式(仅统计事件发生次数)、采样模式(收集上下文如任务ID、pc、backtrace等)。

    3种事件类型:CPU硬件事件(cycle、branch、icache、dcache等)、高精度周期事件(cpu clock)、OS软件事件(task switch、mux pend、irq等)。

  2. 在需要采样的代码起始点调用LOS_PerfStart(UINT32 sectionId), 入参sectionId标记不同的采样回话id。

  3. 在需要采样的代码结束点调用LOS_PerfStop。

  4. 调用输出缓冲区数据的接口LOS_PerfDataRead读取采样数据,并使用IDE工具进行解析。

内核态编程实例

本实例实现如下功能:

  1. 创建perf测试任务。

  2. 配置采样事件。

  3. 启动perf。

  4. 执行需要统计的算法。

  5. 停止perf。

  6. 输出统计结果。

内核态示例代码

前提条件:在menuconfig菜单中完成perf模块的配置, 并勾选Enable Hook Feature,Enable Software Events for Sampling。

为方便学习,本演示代码直接在 . kernel /liteos_a/testsuites /kernel /src /osTest.c中编译验证即可。

实例代码如下:

#include "los_perf.h"
#define TEST_MALLOC_SIZE 200
#define TEST_TIME        5

/* 验证函数中进行malloc和free */
VOID test(VOID)
{
    VOID *p = NULL;
    int i;
    for (i = 0; i < TEST_TIME; i++) {
        p = LOS_MemAlloc(m_aucSysMem1, TEST_MALLOC_SIZE);
        if (p == NULL) {
            PRINT_ERR("test alloc failed\n");
            return;
        }

        (VOID)LOS_MemFree(m_aucSysMem1, p);
    }
}

STATIC VOID OsPrintBuff(const CHAR *buf, UINT32 num)
{
    UINT32 i = 0;
    PRINTK("num: ");
    for (i = 0; i < num; i++) {
        PRINTK(" %02d", i);
    }
    PRINTK("\n");
    PRINTK("hex: ");
    for (i = 0; i < num; i++) {
        PRINTK(" %02x", buf[i]);
    }
    PRINTK("\n");
}
STATIC VOID perfTestHwEvent(VOID)
{
    UINT32 ret;
    CHAR *buf = NULL;
    UINT32 len;

    //LOS_PerfInit(NULL, 0);

    PerfConfigAttr attr = {
        .eventsCfg = {
            .type        = PERF_EVENT_TYPE_SW,
            .events = {
                [0]      = {PERF_COUNT_SW_TASK_SWITCH, 0xff}, /* 抓取调度 */
                [1]      = {PERF_COUNT_SW_MEM_ALLOC, 0xff},   /* 抓取内存分配 */

                PERF_COUNT_SW_TASK_SWITCH
            },
            .eventsNr    = 2,
            .predivided  = 1,             /* cycle counter increase every 64 cycles */
        },
        .taskIds         = {0},
        .taskIdsNr       = 0,
        .needSample      = 0,
        .sampleType      = PERF_RECORD_IP | PERF_RECORD_CALLCHAIN,
    };
    ret = LOS_PerfConfig(&attr);
    if (ret != LOS_OK) {
        PRINT_ERR("perf config error %u\n", ret);
        return;
    }
    PRINTK("------count mode------\n");
    LOS_PerfStart(0);
    test(); /* this is any test function*/
    LOS_PerfStop();
    PRINTK("--------sample mode------ \n");
    attr.needSample = 1;
    LOS_PerfConfig(&attr);
    LOS_PerfStart(2); // 2: set the section id to 2.
    test(); /* this is any test function*/
    LOS_PerfStop();
    buf = LOS_MemAlloc(m_aucSysMem1, LOSCFG_PERF_BUFFER_SIZE);
    if (buf == NULL) {
        PRINT_ERR("buffer alloc failed\n");
        return;
    }
    /* get sample data */
    len = LOS_PerfDataRead(buf, LOSCFG_PERF_BUFFER_SIZE);
    OsPrintBuff(buf, len); /* print data */
    (VOID)LOS_MemFree(m_aucSysMem1, buf);
}

UINT32 Example_Perf_test(VOID)
{
    UINT32 ret;
    TSK_INIT_PARAM_S perfTestTask = {0};
    UINT32 taskID;
    /* 创建用于perf测试的任务 */
    perfTestTask.pfnTaskEntry = (TSK_ENTRY_FUNC)perfTestHwEvent;
    perfTestTask.pcName       = "TestPerfTsk";    /* 测试任务名称 */
    perfTestTask.uwStackSize  = 0x1000; // 0x8000: perf test task stack size
    perfTestTask.usTaskPrio   = 5; // 5: perf test task priority
    ret = LOS_TaskCreate(&taskID, &perfTestTask);
    if (ret != LOS_OK) {
        PRINT_ERR("PerfTestTask create failed. 0x%x\n", ret);
        return LOS_NOK;
    }
    return LOS_OK;
}
LOS_MODULE_INIT(perfTestHwEvent, LOS_INIT_LEVEL_KMOD_EXTENDED);
c
内核态结果验证

输出结果如下:

type: 2
events[0]: 1, 0xff
events[1]: 3, 0xff
predivided: 1
sampleType: 0x60
needSample: 0
------count mode------
[task switch] eventType: 0x1 [core 0]: 0
[mem alloc] eventType: 0x3 [core 0]: 5
time used: 0.005000(s)
--------sample mode------
type: 2
events[0]: 1, 0xff
events[1]: 3, 0xff
predivided: 1
sampleType: 0x60
needSample: 1
dump perf data, addr: 0x402c3e6c length: 0x5000
time used: 0.000000(s)
num:  00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
hex:  00 ffffffef ffffffef ffffffef 02 00 00 00 14 00 00 00 60 00 00 00 02 00 00 00

根据实际运行环境,过程打印会有差异
  • 针对计数模式,系统在perf stop后会打印: 事件名称(cycles)、事件类型(0xff)、事件发生的次数(5466989440)。

    当采样事件为硬件PMU事件时,打印的事件类型为实际的硬件事件id,非enum PmuHWId中定义的抽象类型。

  • 针对采样模式,系统在perf stop后会打印采样数据的地址和长度: dump section data, addr: (0x8000000) length: (0x5000)

用户可以通过JTAG口导出该片内存,再使用IDE线下工具解析。

或者通过LOS_PerfDataRead将数据读到指定地址,进行查看或进一步处理。示例中OsPrintBuff为测试接口,其按字节打印Read到的采样数据,num表示第几个字节,hex表示该字节中的数值。

粉丝反馈

经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?

为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。

在这里插入图片描述

《鸿蒙 (Harmony OS)开发学习手册》(共计892页):https://gitcode.com/HarmonyOS_MN/733GH/overview

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

鸿蒙开发面试真题(含参考答案):

在这里插入图片描述

《OpenHarmony源码解析》:

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……
  • 系统架构分析
  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

图片

OpenHarmony 设备开发学习手册:https://gitcode.com/HarmonyOS_MN/733GH/overview

图片
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2159327.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

UE学习篇ContentExample解读-----------Blueprint_Mouse_Interaction

文章目录 总览描述&#xff08;Blueprint_Mouse_Interaction&#xff09;阅览解析1、PlayerControler分析2、拖拽球蓝图分析&#xff1a;3、移动的立方体分析&#xff1a; 新概念总结致谢&#xff1a; 总览描述&#xff08;Blueprint_Mouse_Interaction&#xff09; 打开关卡后…

MySQL tinyint(1)类型数据在经过flink cdc同步到doris后只有0/1问题定位与解决

背景&#xff1a; 近期在负责公司数据仓库搭建事宜&#xff0c;踩了一些坑后&#xff0c;终于通了&#xff0c;目标报表也成功迁移到了新方案上&#xff0c;可在数据验收的时候发现&#xff0c;同一个订单查询出了多条记录&#xff0c;原本以为只是简单的left join出多条记录问…

植物检测系统源码分享

植物检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vision …

Kubernetes调度单位Pod

Kubernetes调度单位Pod 1 Pod简介 不直接操作容器container。 一个 pod 可包含一或多个容器&#xff08;container&#xff09;&#xff0c;它们共享一个 namespace&#xff08;用户&#xff0c;网络&#xff0c;存储等&#xff09;&#xff0c;其中进程之间通过 localhost 本地…

Linux环境下安装部署MySQL8.0以上(内置保姆级教程) C语言

一、环境搭建、 1 、安装MySQL服务端与客户端 sudo apt-get install mysql-server //mysql服务端安装 。 &#xff08;现在只安装这一个就够了&#xff0c;包含了客户端的&#xff09; sudo apt-get install mysql-client //mysql客户端安装。 mysql服务器端程序&…

jmeter本身常用性能优化方法

第一种设置&#xff1a; 修改Jmeter.bat文件&#xff0c;调整JVM参数(修改jmeter本身的最小最大堆内存)&#xff0c;默认都是1个G set HEAP-Xms5g -Xmx5g -XX:MaxMetaspaceSize256m我的本机内存是8G&#xff0c;那最大可以设置870%(本机内存的70%)5.6g 这里我设置的5g 如果…

CSS的盒子模型(Box Model)

所有HTML元素都可以看作盒子&#xff0c;在CSS中盒子模型是用来设计和布局的&#xff0c;CSS盒子模型本质上是一个盒子&#xff0c;分装周围的HTML元素包括&#xff1a;外边距&#xff0c;边框&#xff0c;内边距和实际内容。 Margin&#xff08;外边距&#xff09; 清除边框…

CSS的弹性盒子模型(Flex box)

弹性盒子模型是CSS3的一种新的布局模式&#xff0c;弹性盒是一种当页面需要适应不同的屏幕大小以及设备类型时确保拥有合适的布局方式&#xff0c;引入弹性盒子模型的目的时提供更加有效的方式来对一个容器中的子元素进行排列&#xff0c;对齐和分配空白空间。 弹性盒子由弹性容…

Linux复习--网络基础(OSI七层、TCP三次握手与四次挥手、子网掩码计算)

一、ISO/OSI七层模型的分层与作用 1、ISO/OSI的七层模型 2、作用 应用层&#xff1a;为用户提供服务&#xff0c;给用户一个操作界面表示层&#xff1a;数据提供表示&#xff1b;加密&#xff1b;压缩&#xff1b;会话层&#xff1a;确定数据是否需要进行网络传递传输层&…

好用的idea方法分隔符插件

好用的idea方法分隔符插件

OpenCV特征检测(12)检测图像中的潜在角点函数preCornerDetect()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 计算用于角点检测的特征图。 该函数计算源图像的基于复杂空间导数的函数 dst ( D x src ) 2 ⋅ D y y src ( D y src ) 2 ⋅ D x x src − 2 …

OpenCV 3

模板匹配方法 尽量采用归一化的方法&#xff0c;因为它更加精细。 匹配效果展示 匹配单一图像 这是一段Python代码&#xff0c;主要使用了OpenCV库进行图像处理。这段代码的主要功能是通过模板匹配方法在一张大图中找到一个小图的位置。 具体来说&#xff1a; - 第一行的for…

项目实战:Qt+OSG爆破动力学仿真三维引擎测试工具v1.1.0(加载.K模型,子弹轨迹模拟动画,支持windows、linux、国产麒麟系统)

若该文为原创文章&#xff0c;转载请注明出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/142454993 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、Op…

验收测试:从需求到交付的全程把控!

在软件开发过程中&#xff0c;验收测试是一个至关重要的环节。它不仅是对软件质量的把关&#xff0c;也是对整个项目周期的全程把控。从需求分析到最终的软件交付&#xff0c;验收测试都需要严格进行&#xff0c;以确保软件能够符合预期的质量和性能要求。 一、需求分析阶段 在…

[uni-app]小兔鲜-01项目起步

项目介绍 效果演示 技术架构 创建项目 HBuilderX创建 下载HBuilderX编辑器 HBuilderX/创建项目: 选择模板/选择Vue版本/创建 安装插件: 工具/插件安装/uni-app(Vue3)编译器 vue代码不能直接运行在小程序环境, 编译插件帮助我们进行代码转换 绑定微信开发者工具: 指定微信开…

Linux 基本指令(二)

目录 1. more指令 2. less指令(重要) 3. head指令 4. tail指令 5. date指令 (1)可以通过选项来指定格式&#xff1a; ​编辑 (2)在设定时间方面 (3)时间戳 6. cal指令 7. find指令 8. grep指令 9. alias指令 10. zip指令与unzip指令 (1). zip指令 (2). unzip指令…

链表分割-----------lg

现有一链表的头指针 ListNode* pHead&#xff0c;给一定值x&#xff0c;编写一段代码将所有小于x的结点排在其余结点之前&#xff0c;且不能改变原来的数据顺序&#xff0c;返回重新排列后的链表的头指针。 我们可以假设x为36&#xff0c;则小于36都排在前边&#xff0c;>3…

桌面便签哪个好用?好用的便签软件推荐?

随着信息技术的发展&#xff0c;我们的生活方式也发生了翻天覆地的变化。从纸质笔记本到电子便签&#xff0c;这不仅仅是载体的转换&#xff0c;更是思维习惯的一次革新。在这个数字时代&#xff0c;如何利用科技工具来辅助我们更好地管理时间和信息&#xff0c;成为了值得探讨…

linux环境oracle11.2.0.4打补丁(p31537677_112040_Linux-x86-64.zip)

上传补丁及opatch工具 创建目录并上传opatch工具和补丁包 [oraclerhel64 ~]$ mkdir /u01/psu [oraclerhel64 ~]$ cd /u01/psu [oraclerhel64 psu]$ ll total 514572 -rw-r--r-- 1 oracle oinstall 391781147 Sep 23 17:37 p31537677_112040_Linux-x86-64.zip -rw-r--r-- 1 or…

中电金信 :基于开放架构的私有云建设实践

01开放架构私有云诞生背景 随着国产化创新建设的深化&#xff0c;产业侧行业软件持续进行云原生改造&#xff0c;金融机构拥抱云和容器技术&#xff0c;实现数智化转型已是大势所趋。近年&#xff0c;云原生技术以及架构发展速度更是惊人&#xff0c;私有云开始有了新架构、有了…