【AI算法岗面试八股面经【超全整理】——NLP】

news2024/11/15 13:27:23

AI算法岗面试八股面经【超全整理】

  • 概率论【AI算法岗面试八股面经【超全整理】——概率论】
  • 信息论【AI算法岗面试八股面经【超全整理】——信息论】
  • 机器学习【AI算法岗面试八股面经【超全整理】——机器学习】
  • 深度学习【AI算法岗面试八股面经【超全整理】——深度学习】
  • NLP【AI算法岗面试八股面经【超全整理】——NLP】
  • CV

目录

    • 1、RNN
    • 2、LSTM
    • 3、Transformer
    • 4、Word2Vec
    • 5、BERT
    • 6、GPT
    • 7、CLIP
    • 8、BPE(Byte Pair Encoder)字节对编码

1、RNN

优点:

  • 参数共享。 RNN在每个时间步都使用相同的参数,因此在训练和预测时具有较小的计算负担;
  • 灵活性。 RNN可以处理各种长度的序列输入,并且可以用于不同的任务,如语言模型、时间序列预测等

缺点:

  • 梯度消失或爆炸。 RNN在处理长期依赖关系时容易出现梯度消失或爆炸的问题,导致难以捕捉远距离的依赖关系;
  • 短期记忆限制。 RNN的短期记忆相对较弱,难以有效地记住较长的历史信息

2、LSTM

优点:

  • 长期依赖关系。 LSTM通过门控机制 (遗忘门、输入门、输出门) 有效地解决了长期依赖问题,能够更好地捕捉长距离的序列依赖关系;
  • 记忆单元。 LSTM引入了记忆单元,可以保留和更新信息,有助于记住长序列中的重要信息;
  • 防止梯度消失。 LSTM通过门控机制可以更有效地控制梯度的流动,减少了梯度消失或爆炸的问题

3、Transformer

一种基于自注意力机制的序列到序列(Sequence-to-Sequence)模型,用于处理NLP任务,解决长依赖问题和并行计算效率的平衡。相比于RNN模型Transformer使用全局的自注意力机制,使模型可以同时关注输入序列的所有位置,更好地捕捉长距离依赖关系。Transformer引入多头注意力机制提高了模型的表达能力。Transformer两个关键组件组成:Encoder和Decoder。编码器将输入序列编码为一系列上下文相关的表示,解码器用这些表示生成目标序列。

  • 编码器,输入序列经过多头自注意力层和前馈神经网络层处理。自注意力层输入序列的每个位置都与其他位置进行注意力计算,以获取位置之间的相关性。使得模型能够在不同位置之间建立上下文关联,能够处理长距离的依赖关系。
  • 解码器,除自注意力层和前馈神经网络层,还包含一个编码器-解码器注意力层。交叉注意力层将编码器中的信息与解码器的当前位置关联,在生成目标序列时获得更好的上下文信息。
  • Transformer端到端训练,最大化目标序列的条件概率来进行模型优化。训练中使用掩码注意力(Masked Attention)确保解码器只能看到当前位置之前输入,避免信息泄露。

Transformer优点:

  • 能处理长距离依赖问题,适用于处理包含长序列的任务。
  • 并行计算效率好,使得模型在GPU上能够进行高效训练和推理。
  • 具有较好的表示能力和泛化能力,在多个NLP任务上取得了优异的性能。

1、位置编码
单词在句子中的位置以及排列顺序是十分重要的,引入词序信息有助于理解语义。循环神经网络本身就是一种顺序结构,天生就包含了词在序列中的位置信息。当抛弃循环神经网络结构,完全采用Attention,这些词序信息就会丢失,模型就没有办法知道每个词在句子中的相对和绝对的位置信息。因此有必要把词序信号加到词向量上帮助模型学习这些信息,位置编码(Positional Encoding)就是用来解决这种问题的方法。
给定一个长度为n的输入序列,让t表示词在序列中的位置, P t ⃗ ∈ R d \vec{P_t} \in R^d Pt Rd表示t位置对应的向量,d是向量的维度, f : N → R d f:N\to R^d f:NRd是生成位置向量 P t ⃗ \vec{P_t} Pt 的函数,定义如下:
P t ⃗ ( i ) = f ( t ) ( i ) : = { s i n ( w k ⋅ t ) if i=2k c o s ( w k ⋅ t ) if i=2k+1 \vec{P_t}^{(i)}=f(t)^{(i)}:=\begin{cases} sin(w_k\cdot t)& \text{if i=2k}\\cos(w_k\cdot t)& \text{if i=2k+1} \end{cases} Pt (i)=f(t)(i):={sin(wkt)cos(wkt)if i=2kif i=2k+1
其中,频率 w k w_k wk定义如下:
w k = 1 1000 0 2 k d w_k=\frac{1}{10000^{\frac{2k}{d}}} wk=10000d2k1
在Transformer中,位置编码是通过加法的方式结合到词向量中的。
2、多头自注意力
Transformer的多头注意力看上去是借鉴了CNN中同一卷积层内使用多个卷积核的思想,原文中使用 8 个“scaled dot-product attention”,在同一“multi-head attention”层中,输入均为“KQV”,同时进行注意力的计算,彼此之前参数不共享,最终将结果拼接起来,这样可以允许模型在不同的表示子空间里学习到相关的信息。即希望每个注意力头只关注最终输出序列中一个子空间,互相独立。核心思想在于抽取到更加丰富的特征信息。
3、Q、K、V

  • Q代表query查询,后续会和每一个k进行匹配,找到最相似的k
  • K代表key关键字,后续会被每一个q匹配
  • V代表value值,代表从输入中提到的信息

注意力机制的核心为:
Q = X W Q Q=XW^Q Q=XWQ K = X W K K=XW^K K=XWK V = X W V V=XW^V V=XWV A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V
每一个key,都对应一个value;计算query和key的匹配程度就是计算两者相关性,相关性越大,代表key对应value的权重也就越大。
d k d_k dk是K的维度,除以一个根号d因为Q和K相乘之后的数值可能会相差很大,除以根号d可以平衡数据。利于模型收敛。

4、预测与推理阶段都使用mask原因

  • 训练阶段:训练时计算loss,是用当前decoder输入所有单词对应位置的输出 y 1 , y 2 , y 3 , ⋯   , y t y_1,y_2,y_3,\cdots,y_t y1,y2,y3,,yt与真实的翻译结果ground truth去分别算cross entropy loss,然后把t个loss加起来,如果使用self-attention,那么 y 1 y_1 y1这个输出里包含了 x 1 x_1 x1右侧单词信息(包含要预测下一个单词 x 2 x_2 x2的信息),用到了未来信息,属于信息泄露。
  • 预测阶段:预测阶段要保持重复单词预测结果是一样的,这样不仅合理,而且可以增量更新(预测时会选择性忽略重复的预测词,只摘取最新预测的单词拼接到输入序列中),如果关掉dropout,那么当预测序列是 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3时的输出结果,应该是和预测序列是 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3的前3个位置结果是一样的(增量更新);同时与训练时的模型架构保持一致,前向传播的方式是一致的。

5、嵌入向量和位置向量用为什么add而不用concat

  • 在d维token嵌入向量上concat一个d维的位置向量,变成了2d维的向量,最终要得到d维的输出,需要*(2d,d)的矩阵。等价于:先对token嵌入向量做变换,然后再加上位置嵌入,并且concat会增加网络的计算量。
  • 相同的token在句子中不同位置语义应该是不一样的,token向量应该有差异,add可以在向量的各个维度上表现出差异,而concat会导致向量前面部分一样,只有后面部分不同。

6、为什么在进行Softmax之前需要对Attention进行scaled(为什么除以 d k \sqrt{d_k} dk )

  • 这取决于softmax函数的特性,如果softmax内计算的数数量级太大,会输出近似one-hot编码的形式,导致梯度消失的问题,所以需要scale。
  • 那么至于为什么需要用维度开根号,假设向量q,k满足各分量独立同分布,均值为0,方差为1,那么qk点积均值为0,方差为dk,从统计学计算,若果让qk点积的方差控制在1,需要将其除以dk的平方根,是的softmax更加平滑

4、Word2Vec

Word2Vec有两种主要的模型:CBOW和Skip-gram。这两种模型都是基于神经网络的模型,它们通过学习文本数据中的上下文信息来得到单词的向量表示。

  • CBOW。 全称是Continuous bag of words(连续词袋模型),通过context word(背景词)来预测Target word(目标词)。在每个窗口内它不考虑词序信息,它是直接把上下文的词向量相加,自然就损失了词序信息。
  • Skip-gram。 与CBOW相反,Skip-gram模型的输入是一个词汇,输出则是该词汇的上下文。(Skip-gram 出来的准确率比cbow 高)
    在这里插入图片描述

5、BERT

BERT模型由多层Transformer编码器堆叠而成,通过预训练任务来学习语言的深层表示。这些预训练任务包括:
(1)遮蔽语言模型(Masked Language Model,MLM)(类似于完形填空)。在MLM任务中,模型被训练来预测输入句子中被遮蔽的词;
(2)下一句预测(Next Sentence Prediction,NSP)。在NSP任务中,模型需要判断两个句子是否是连续的文本序列。

6、GPT

1、GPT-1:
Pretrain+finetune
在预训练阶段,给定tokens的语料: U = u 1 , ⋯   , u t U=u_1,\cdots,u_t U=u1,,ut,目标函数为最大化似然函数:
L 1 ( U ) = ∑ i l o g ( P ( u i ∣ u i − k , ⋯   , u i − 1 ; θ ) L_1(U)=\sum_i{log(P(u_i|u_{i-k},\cdots,u_{i-1};\theta)} L1(U)=ilog(P(uiuik,,ui1;θ)
其中, k k k是文本上下文窗口的大小

  • 12层的transformer,每个transformer块有12个头
  • 词编码的长度为768
  • Batchsize为64

2、GPT-2:
Zero-shot
GPT-2去掉了fine-tuning层:不再针对不同任务分别进行微调建模,而是不定义这个模型应该做什么任务,模型会自动识别出来需要做什么任务。GPT2依然沿用GPT1单向transformer的模式,只不过使用了更大的网络参数,和更大的数据集。
GPT-2试图通过“上下文学习In Context Learning”的方式来实现这一点,使用预训练语言模型的文本输入作为任务规范的一种形式:模型以自然语言指令和/或几个任务演示为条件,然后预期仅通过预测接下来会发生什么来完成更多的任务实例。
GPT-2的核心思想概括为:任何有监督任务都是语言模型的一个子集,当模型的容量非常大且数据量足够丰富时,仅仅靠训练语言模型的学习便可以完成其他有监督学习的任务。

  • 滑动窗口大小增加为1024
  • 将Transformer堆叠层数增加到48层,隐层的维度增至1600,参数量达15亿
  • Batchsize的大小增加为512

3、GPT-3:
稀疏自注意力,(locally banded sparse attention,局部带状稀疏注意力)

  • Dense Attention(传统 Self Attention):每个token之间两两计算Attention
  • Sparse Attention:每个token只与其他token的一个子集计算Attention
    网络容量的提升:
  • GPT-3采用了96层的多头transformer,头的个数为96
  • 词向量的长度是12888
  • 上下文滑动窗口的窗口大小提升至2048个token
    具体来说,sparse Attention除了相对距离不超过k,以及相对距离为k,2k,3k,…的token,其他所有token的注意力都设为0。
    在这里插入图片描述

4、GPT和BERT区别:

  • GPT用的是transformer中去掉中间Encoder-Decoder Attention的Decoder,(其实也可以等价地说,用到的是Encoder层,只是将Multi-Head Attention换成了Masked Multi-Head Attention),即:Masked Self Attention,是单向语言模型,即给定前几个词预测下一个词,更适合自然语言生成的任务;
  • 而BERT使用的是transformer的Encoder,即:Self Attention,是双向的语言模型,即给定周围上下文的词预测中间被mask的词,更适合自然语言理解的任务。

7、CLIP

使用对比学习,让模型学习文本-图像对的匹配关系,在同时输入文本和图像对的情况下,只有对角线上的位置才是真值。
为了实现这一目标,CLIP使用了一个多模态编码器,它由两个自编码器组成:图像编码器可以是基于卷积神经网络(CNN)或者VIT的模型;文本编码器则是一个基于Transformer的模型。作者通过一个线性投影将每个编码器的表示映射到多模态嵌入空间。通过联合训练图像编码器和文本编码器来最大化批次中的N个真实对的图像和文本嵌入的余弦相似度,同时最小化 N 2 − N N^2-N N2N个错误对的余弦相似度。

8、BPE(Byte Pair Encoder)字节对编码

1、构建词表:

  • 确定词表大小,即subword的最大个数V;
  • 在每个单词最后添加一个,并且统计每个单词出现的频率;
  • 将所有单词拆分为单个字符,构建出初始的词表,此时词表的subword就是字符;
  • 挑出频次最高的字符对,比如说t和h组成的th,将新字符加入词表,然后将预料中所有该字符对融合(merge),即所有t和h都变为th。新字符依然可以参与后续的merge,优点类似哈夫曼树,BPE实际上就是一种贪心算法;
  • 重复3、4的操作,直到词表中单词数量达到预设的阈值V或者下一个字符对的频数为1;

2、BPE编码:

  • 将词表中的单词按长度大小,从长到短排序;
  • 对于语料中的每个单词,遍历排序好的词表,判断词表中的单词/子词(subword)是否是该字符串的子串,如果匹配上了,则输出当前子词,并继续遍历单词剩下的字符串;
  • 如果遍历完词表,单词中仍然后子字符串没有被匹配,那我们将其替换为一个特殊的子词,比如< unk >

3、BPE解码:
将所有的输出子词拼在一起,直到碰到结尾为。
例如:[“moun”, “tain”, “high”, “the”] 解码后:[“mountain”, “highthe”]

4、优缺点:

  • 优点: BPE算法是介于字符和单词粒度之间的一种以subword为粒度的分词算法。1)能够解决OOV问题(无法很好的处理未知或罕见的词汇);2)减少词汇表大小;3)具有一定的泛化能力;
  • 缺点: 是基于统计的分词算法,对语料依赖性很强,如果语料规模很小,则效果一般不佳。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2156982.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Crack道路裂缝检测数据集——目标检测数据集

【Crack道路裂缝检测数据集】共3684张。 目标检测数据集&#xff0c;标注文件为YOLO适用的txt格式。已划分为训练、验证集。 图片分辨率&#xff1a;224*224 类别&#xff1a;crack Crack道路裂缝检测数据集 数据集描述 该数据集是一个专门用于训练和评估基于YOLO&#xff0…

[笔记]某变频器,功能列表及参数表

产品代号&#xff1a;INVT GOODDRIVE&#xff0c;这家公司我的产品我似乎在特检院看到过&#xff1f;或者在某个地铁建设工地看到过。是深圳的。 1.产品功能点&#xff1a; 变频锥形电机控制、抱闸转矩验证&#xff1f;抱闸反馈零位检测行程限位超载防护轻载升速&#xff08;…

机器学习课程学习周报十三

机器学习课程学习周报十三 文章目录 机器学习课程学习周报十三摘要Abstract一、机器学习部分1. 文生图模型概述2. Stable Diffusion概述3. ControlNet概述4. 概率论复习&#xff08;二&#xff09; 总结 摘要 本周的学习内容涵盖了文生图模型、Stable Diffusion、ControlNet以…

从零开始讲DDR(5)——读懂Datasheet

对于开发人员来说&#xff0c;需要根据实际场景和使用的需要&#xff0c;使用不同厂家&#xff0c;不同型号的DDR&#xff0c;虽然原理上大同小异&#xff0c;但是还是有一些细节上的需要注意的地方&#xff0c;接触一个新的DDR芯片&#xff0c;首先就是需要找到对应的datashee…

Mybatis 返回 Map 对象

一、场景介绍 假设有如下一张学生表&#xff1a; CREATE TABLE student (id int NOT NULL AUTO_INCREMENT COMMENT 主键,name varchar(100) NOT NULL COMMENT 姓名,gender varchar(10) NOT NULL COMMENT 性别,grade int NOT NULL COMMENT 年级,PRIMARY KEY (id) ) ENGINEInnoD…

LeetCode讲解篇之238. 除自身以外数组的乘积

文章目录 题目描述题解思路题解代码 题目描述 题解思路 对于该题&#xff0c;我们可以先使用一个循环记录所有非零元素的乘积结果和非零元素的个数 如果非零元素个数为0&#xff0c;则非零元素的乘积除以数组对应位置的数字就是除自身以外的数组的乘积如果非零元素个数为1&am…

新质农业——水肥一体化技术

橙蜂智能公司致力于提供先进的人工智能和物联网解决方案&#xff0c;帮助企业优化运营并实现技术潜能。公司主要服务包括AI数字人、AI翻译、埃域知识库、大模型服务等。其核心价值观为创新、客户至上、质量、合作和可持续发展。 橙蜂智农的智慧农业产品涵盖了多方面的功能&…

【人工智能学习】8_人工智能其他通用技术

知识图谱 在看影视剧或小说时&#xff0c;若其中的人物很多、人物关系复杂&#xff0c;我们一般会用画人物关系图谱来辅助理解人物关系。那什么是知识图谱呢&#xff1f; 知识是人类对信息进行处理之后的认识和理解&#xff1b;对数据和信息的凝练、总结后的成果。 将信息转…

MySQL-排名函数ROW_NUMBER(),RANK(),DENSE_RANK()函数的异同

MySQL-排名函数ROW_NUMBER()&#xff0c;RANK()&#xff0c;DENSE_RANK()函数的异同 前言 假设有如下表结构与数据&#xff0c;class_id表示班级&#xff0c;需求&#xff1a;现在要按照班级分组&#xff0c;每个班级的学生进行年龄从小到大排序 一、ROW_NUMBER()函数 ROW_NUM…

YOLO航拍车辆和行人识别

YOLO航拍车辆和行人识别 图片数量9695&#xff0c;标注为xml和txt格式&#xff1b; class&#xff1a;car&#xff0c;pedestrian&#xff0c;truck&#xff0c;bus 用于yolo&#xff0c;Python&#xff0c;目标检测&#xff0c;机器学习&#xff0c;人工智能&#xff0c;深度学…

软件测试分类篇(下)

目录 一、按照测试阶段分类 1. 单元测试 2. 集成测试 3. 系统测试 3.1 冒烟测试 3.2 回归测试 4. 验收测试 二、按照是否手工测试分类 1. 手工测试 2. 自动化测试 3. 手工测试和自动化测试的优缺点 三、按照实施组织分类 1. α测试(Alpha Testing) 2. β测试(Beta…

图像放大效果示例【JavaScript】

实现效果&#xff1a; 当鼠标悬停在小图&#xff08;缩略图&#xff09;上时&#xff0c;大图&#xff08;预览图&#xff09;会随之更新为相应的小图&#xff0c;并高亮当前悬浮的小图的父元素。 代码&#xff1a; 1. HTML部分 <!DOCTYPE html> <html lang"z…

Nginx简介;Nginx安装

一&#xff0c;Nginx简介 Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器&#xff0c;在BSD-like 协议下发行。是一个高性能的HTTP和反向代理web服务器 &#xff0c;同时也提供了IMAP/POP3/SMTP服务。 其特点是占有内存少…

OpenCV特征检测(8)检测图像中圆形的函数HoughCircles()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在灰度图像中使用霍夫变换查找圆形。 该函数使用霍夫变换的一种修改版本在灰度图像中查找圆形。 例子&#xff1a; #include <opencv2/imgp…

【解密 Kotlin 扩展函数】扩展函数的创建(十六)

导读大纲 1.1 为第三方的类添加方法: 扩展函数 1.1 为第三方的类添加方法: 扩展函数 Kotlin 的主题之一是与现有代码的平滑集成 即使是纯 Kotlin 项目,也是构建在 Java 库之上的 如 JDK、Android 框架和其他第三方框架 而当你将 Kotlin 集成到 Java 项目中时 你还要处理尚未或不…

Ubuntu清理内存导致的一系列错误及解决方法

文章目录 火狐浏览器和pycharm消失打不开 安不上 卸不掉后记 火狐浏览器和pycharm消失 打不开 安不上 卸不掉 清理内存后&#xff0c;火狐和pycharm的图标都消失了&#xff0c;在终端输入Firefox显示无法打开 应当先snap install firefox&#xff0c;然而snap install firefo…

【排序算法】插入排序_直接插入排序、希尔排序

文章目录 直接插入排序直接插入排序的基本思想直接插入排序的过程插入排序算法的C代码举例分析插入排序的复杂度分析插入排序的优点 希尔排序希尔排序&#xff08;Shell Sort&#xff09;详解希尔排序的步骤&#xff1a;希尔排序的过程示例&#xff1a;希尔排序的C语言实现举例…

啥?Bing搜索古早BUG至今未改?

首先&#xff0c;大家先看下面的一个数学公式。 Γ ( z ) ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)∫0∞​tz−1e−tdt. 看不懂&#xff1f;没关系&#xff0c;因为我也看不懂 这不是谈论的重点。 当你把鼠标光标移到公式的最开头&…

netflix是什么样的企业文化

netflix是什么样的企业文化 Netflix的企业文化以其“自由与责任”而闻名&#xff0c;这种文化理念在业界被广泛誉为管理的“黄金法则”。《奈飞文化手册》自2009年面世以来&#xff0c;便迅速成为全球企业管理的典范&#xff0c;吸引了超过1500万次的在线阅读与下载。Netflix的…

【C++篇】引领C++模板初体验:泛型编程的力量与妙用

文章目录 C模板编程前言第一章: 初始模板与函数模版1.1 什么是泛型编程&#xff1f;1.1.1 为什么要有泛型编程&#xff1f;1.1.1 泛型编程的优势 1.2 函数模板的基础1.2.1 什么是函数模板&#xff1f;1.2.2 函数模板的定义格式1.2.3 示例&#xff1a;通用的交换函数输出示例&am…