计算机毕业设计之:基于深度学习的路面检测系统(源码+部署文档+讲解)

news2024/11/15 11:06:36

博主介绍:
    ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。

技术范围:
    我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。

 主要内容:
     我的服务内容包括:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文撰写与辅导、论文降重、长期答辩答疑辅导。此外,我还提供腾讯会议一对一的专业讲解和模拟答辩演练,帮助你全面掌握答辩技巧与代码逻辑。

🍅获取源码请在文末联系我🍅
如果你对我的内容感兴趣,记得先收藏!对于毕设选题、项目开发或论文撰写等相关问题,随时欢迎留言咨询,我会尽力帮助更多同学顺利完成学业。

最主要的是免费咨询相关问题!!

一、详细操作演示视频
       在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!
        承诺所有开发的项目,全程售后陪伴!!!文章下方有历年的好评(部分)!!

文档学习资料(阿龙可以赠送所有的录制好的讲解视频):

系统简介:
 

     随着城市交通系统的日益复杂化,道路安全和交通效率成为当下社会关注的重点。特别是在自动驾驶技术、智能交通系统及交通监控设备广泛应用的背景下,路面裂缝检测的重要性日益凸显。路面裂缝不仅影响交通安全,还可能成为交通事故的诱因,因此,开发一种高效、准确的路面裂缝检测系统对于现代交通管理至关重要。

   传统的路面检测方法,如人工视觉检查和基于简单传感器的方法,虽然广泛应用,但这些方法往往劳动强度大、效率低下,且无法实现实时监控和快速反应。随着计算机视觉和深度学习技术的迅速发展,利用这些先进技术来改进路面裂缝检测的方法显得尤为重要。

   本研究旨在开发一个基于YOLOv5s模型的路面裂缝检测系统。该系统利用深度学习技术,特别是卷积神经网络(CNN),能够在不同环境和光照条件下,自动检测和分类路面裂缝。与传统方法相比,本系统具有更高的检测速度和更好的鲁棒性,能够实现大规模和实时的路面状态监控。

   本研究的实施不仅能够提高道路维护的效率,减少因路面问题引发的交通事故,还能为智能交通系统的发展提供技术支持。系统的开发将集成视频上传、裂缝检测及结果展示等功能,为用户提供一个全面的路面检测解决方案。此外,系统还将支持笔记本摄像头进行实时仿真检测,进一步扩展其应用场景。

   通过深入研究和应用深度学习在图像处理领域的先进技术,本项目旨在为路面裂缝检测提供一个更加准确、高效且成本效益高的解决方案,为交通安全管理和智能交通系统的发展做出贡献。

系统实现界面:

训练结果:

实现代码:

aimport argparse
import platform
import shutil
import time
from numpy import random
import argparse
import os
import sys
from pathlib import Path
import cv2
import numpy as np
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5 import QtCore, QtGui, QtWidgets
import os
import sys
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.augmentations import letterbox
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)

from utils.torch_utils import select_device, time_sync
import numpy as np
import time

def load_model(
        weights=ROOT / 'best.pt',  # model.pt path(s)
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference

):
    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine

    # Half
    half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()
    return model, stride, names, pt, jit, onnx, engine

#
def run(model, img, stride, pt,
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.15,  # confidence threshold
        iou_thres=0.05,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        half=False,  # use FP16 half-precision inference
        ):

    cal_detect = []

    device = select_device(device)
    names = model.module.names if hasattr(model, 'module') else model.names  # get class names

    # Set Dataloader
    im = letterbox(img, imgsz, stride, pt)[0]

    # Convert
    im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
    im = np.ascontiguousarray(im)

    im = torch.from_numpy(im).to(device)
    im = im.half() if half else im.float()  # uint8 to fp16/32
    im /= 255  # 0 - 255 to 0.0 - 1.0
    if len(im.shape) == 3:
        im = im[None]  # expand for batch dim

    pred = model(im, augment=augment)

    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
    # Process detections
    for i, det in enumerate(pred):  # detections per image
        if len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(im.shape[2:], det[:, :4], img.shape).round()

            # Write results

            for *xyxy, conf, cls in reversed(det):
                c = int(cls)  # integer class
                label = f'{names[c]}'

                cal_detect.append([label, xyxy,float(conf)])
    return cal_detect


def det_yolov7(info1):
    global model, stride, names, pt, jit, onnx, engine
    if info1[-3:] in ['jpg','png','jpeg','tif','bmp']:
        image = cv2.imread(info1)  # 读取识别对象
        try:
            results = run(model, image, stride, pt)  # 识别, 返回多个数组每个第一个为结果,第二个为坐标位置
            for i in results:
                box = i[1]
                p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
                color = [0, 0, 255]
                cv2.rectangle(image, p1, p2, color, thickness=3, lineType=cv2.LINE_AA)
                cv2.putText(image, str(i[0]) + ' ' + str(i[2])[:5], (int(box[0]), int(box[1]) - 10),
                            cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3)
        except:
            pass
        ui.showimg(image)
    if info1[-3:] in ['mp4','avi']:
        capture = cv2.VideoCapture(info1)
        while True:
            _, image = capture.read()
            if image is None:
                break
            try:
                results = run(model, image, stride, pt)  # 识别, 返回多个数组每个第一个为结果,第二个为坐标位置
                for i in results:
                    box = i[1]
                    p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
                    color = [0, 0, 255]
                    cv2.rectangle(image, p1, p2, color, thickness=3, lineType=cv2.LINE_AA)
                    cv2.putText(image, str(i[0]) + ' ' + str(i[2])[:5], (int(box[0]), int(box[1]) - 10),
                                cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3)
            except:
                pass
            ui.showimg(image)
            QApplication.processEvents()

class Thread_1(QThread):  # 线程1
    def __init__(self,info1):
        super().__init__()
        self.info1=info1
        self.run2(self.info1)

    def run2(self, info1):
        result = []
        result = det_yolov7(info1)


class Ui_MainWindow(object):
    def setupUi(self, MainWindow):
        MainWindow.setObjectName("MainWindow")
        MainWindow.resize(1280, 960)
        MainWindow.setStyleSheet("background-image: url(\"./template/carui.png\")")
        self.centralwidget = QtWidgets.QWidget(MainWindow)
        self.centralwidget.setObjectName("centralwidget")
        self.label = QtWidgets.QLabel(self.centralwidget)
        self.label.setGeometry(QtCore.QRect(168, 60, 491, 71))
        self.label.setAutoFillBackground(False)
        self.label.setStyleSheet("")
        self.label.setFrameShadow(QtWidgets.QFrame.Plain)
        self.label.setAlignment(QtCore.Qt.AlignCenter)
        self.label.setObjectName("label")
        self.label.setStyleSheet("font-size:22px;font-weight:bold;font-family:SimHei;background:rgba(255,255,255,0);")
        self.label_2 = QtWidgets.QLabel(self.centralwidget)
        self.label_2.setGeometry(QtCore.QRect(40, 188, 751, 501))
        self.label_2.setStyleSheet("background:rgba(255,255,255,1);")
        self.label_2.setAlignment(QtCore.Qt.AlignCenter)
        self.label_2.setObjectName("label_2")
        self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget)
        self.textBrowser.setGeometry(QtCore.QRect(73, 746, 851, 174))
        self.textBrowser.setStyleSheet("background:rgba(0,0,0,0);")
        self.textBrowser.setObjectName("textBrowser")
        self.pushButton = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton.setGeometry(QtCore.QRect(1020, 750, 150, 40))
        self.pushButton.setStyleSheet("background:rgba(255,142,0,1);border-radius:10px;padding:2px 4px;")
        self.pushButton.setObjectName("pushButton")
        self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_2.setGeometry(QtCore.QRect(1020, 810, 150, 40))
        self.pushButton_2.setStyleSheet("background:rgba(255,142,0,1);border-radius:10px;padding:2px 4px;")
        self.pushButton_2.setObjectName("pushButton_2")
        self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget)
        self.pushButton_3.setGeometry(QtCore.QRect(1020, 870, 150, 40))
        self.pushButton_3.setStyleSheet("background:rgba(255,142,0,1);border-radius:10px;padding:2px 4px;")
        self.pushButton_3.setObjectName("pushButton_2")
        MainWindow.setCentralWidget(self.centralwidget)

        self.retranslateUi(MainWindow)
        QtCore.QMetaObject.connectSlotsByName(MainWindow)

    def retranslateUi(self, MainWindow):
        _translate = QtCore.QCoreApplication.translate
        MainWindow.setWindowTitle(_translate("MainWindow", "基于yolov5s的路面裂缝检测系统"))
        self.label.setText(_translate("MainWindow", "基于yolov5s的路面裂缝检测系统"))
        self.label_2.setText(_translate("MainWindow", "请点击以添加文件"))
        self.pushButton.setText(_translate("MainWindow", "添加文件"))
        self.pushButton_2.setText(_translate("MainWindow", "开始检测"))
        self.pushButton_3.setText(_translate("MainWindow", "退出系统"))

        # 点击文本框绑定槽事件
        self.pushButton.clicked.connect(self.openfile)
        self.pushButton_2.clicked.connect(self.click_1)
        self.pushButton_3.clicked.connect(self.handleCalc3)

    def openfile(self):
        global sname, filepath
        fname = QFileDialog()
        fname.setAcceptMode(QFileDialog.AcceptOpen)
        fname, _ = fname.getOpenFileName()
        if fname == '':
            return
        filepath = os.path.normpath(fname)
        sname = filepath.split(os.sep)
        ui.printf("当前选择的文件路径是:%s" % filepath)


    def handleCalc3(self):
        os._exit(0)

    def printf(self,text):
        self.textBrowser.append(text)
        self.cursor = self.textBrowser.textCursor()
        self.textBrowser.moveCursor(self.cursor.End)
        QtWidgets.QApplication.processEvents()

    def showimg(self,img):
        global vid
        img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        _image = QtGui.QImage(img2[:], img2.shape[1], img2.shape[0], img2.shape[1] * 3,
                              QtGui.QImage.Format_RGB888)
        n_width = _image.width()
        n_height = _image.height()
        if n_width / 500 >= n_height / 400:
            ratio = n_width / 800
        else:
            ratio = n_height / 800
        new_width = int(n_width / ratio)
        new_height = int(n_height / ratio)
        new_img = _image.scaled(new_width, new_height, Qt.KeepAspectRatio)
        self.label_2.setPixmap(QPixmap.fromImage(new_img))

    def click_1(self):
        global filepath
        try:
            self.thread_1.quit()
        except:
            pass
        self.thread_1 = Thread_1(filepath)  # 创建线程
        self.thread_1.wait()
        self.thread_1.start()  # 开始线程


if __name__ == "__main__":
    global model, stride, names, pt, jit, onnx, engine
    model, stride, names, pt, jit, onnx, engine = load_model()  # 加载模型
    app = QtWidgets.QApplication(sys.argv)
    MainWindow = QtWidgets.QMainWindow()
    ui = Ui_MainWindow()
    ui.setupUi(MainWindow)
    MainWindow.show()
    sys.exit(app.exec_())

为什么选择我:

我是程序员阿龙,专注于软件开发,拥有丰富的编程能力和实战经验。在过去的几年里,我辅导了上千名学生,帮助他们顺利完成毕业项目,同时我的技术分享也吸引了超过50W+的粉丝。我是CSDN特邀作者、博客专家、新星计划导师,并在Java领域内获得了多项荣誉,如博客之星。我的作品也被掘金、华为云、阿里云、InfoQ等多个平台推荐,成为各大平台的优质作者。

已经为上百名同学获得优秀毕业生!!

源码获取:
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

 精彩专栏推荐订阅:在下方专栏👇🏻

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2156716.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【redis-02】深入理解redis中RBD和AOF的持久化

redis系列整体栏目 内容链接地址【一】redis基本数据类型和使用场景https://zhenghuisheng.blog.csdn.net/article/details/142406325【二】redis的持久化机制和原理https://zhenghuisheng.blog.csdn.net/article/details/142441756 如需转载,请输入:htt…

2025校招内推-招联金融

【投递方式】 直接扫下方二维码,或点击内推官网https://wecruit.hotjob.cn/SU61025e262f9d247b98e0a2c2/mc/position/campus,使用内推码 igcefb 投递) 【招聘岗位】 后台开发 前端开发 数据开发 数据运营 算法开发 技术运维 软件测试 产品策…

CentOS Stream 9部署docker,并开启API

1、安装docker (1)安装Docker的依赖项和存储库 sudo dnf install -y dnf-plugins-core sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo (2)安装Docker sudo dnf install -y docke…

0基础学习PyTorch——最小Demo

大纲 环境准备安装依赖 训练和推理训练生成数据加载数据TensorDatasetDataLoader 定义神经网络定义损失函数和优化器训练模型 推理 参考代码 PyTorch以其简洁直观的API、动态计算图和强大的社区支持,在学术界和工业界都享有极高的声誉,成为许多深度学习爱…

yum 集中式安装 LNMP

目录 安装 nginx 安装 mysql 安装 php 配置lnmp 配置 nginx 支持 PHP 解析 安装 nginx 修改yum源 将原本的yum源备份 vim /etc/yum.repos.d/nginx.repo [nginx-stable] namenginx stable repo baseurlhttp://nginx.org/packages/centos/7/$basearch/ gpgcheck0 enable…

黎巴嫩BP机爆炸事件启示录:我国应加快供应链安全立法

据报道,当地时间9月17日下午,黎巴嫩首都贝鲁特以及黎巴嫩东南部和东北部多地都发生了BP机爆炸事件。当时的统计数据显示,爆炸造成9人死亡,约2800人受伤。9月18日,死亡人数上升到11人,受伤人数超过4000。 目…

14年数据结构

第一题 解析: 求时间复杂度就是看程序执行了多少次。 假设最外层执行了k次,我们看终止条件是kn,则: 有, 内层是一个j1到jn的循环,显然执行了n次。 总的时间复杂度是内层外层 答案选C。 第二题 解析: 一步一…

车辆行人转向意图状态检测系统源码分享

车辆行人转向意图状态检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of …

【Python】Maya:为人类打造的 Python 日期时间库

不知道少了什么,总感觉没有以前快乐。 在编程中处理日期和时间总是一个挑战,尤其是当涉及到时间和时区的转换时。Maya 是一个由 Kenneth Reitz 开发的 Python 库,旨在简化日期时间的处理,使其对人类开发者更加友好。本文将介绍 M…

如何在jupyter notebook中使用虚拟环境

一:在cmd中打开已经创建好的虚拟环境 二:安装ipykernel conda install ipykernel 三:安装牛逼conda conda install -c conda-forge nb_conda 四:运行jupyter notebook,选择虚拟环境

linux强制关闭再启动后zookeeper无法启动

1、若开启了zkserver就先关闭zkserver 查看zkserver是否启动 sh zkServer.sh status关闭zkServer sh zkServer.sh stop2、更改conf/zoo.cfg 将这里的启动端口改为2183 3、启动zkServer sh zkServer.sh start4、以2183端口启动zkCli zkCli.sh -server 127.0.0.1:2183这样启…

传知代码-基于多尺度动态卷积的图像分类

代码以及视频讲解 本文所涉及所有资源均在传知代码平台可获取 概述 在计算机视觉领域,图像分类是非常重要的任务之一。近年来,深度学习的兴起极大提升了图像分类的精度和效率。本文将介绍一种基于动态卷积网络(Dynamic Convolutional Netw…

机器人机构、制造

简单整理一下,在学习了一些运动学和动力学之类的东西,简单的整合了一些常用的机械结构和图片。 1.电机: 市面上的电机有:直流电机,交流电机,舵机,步进电机,电缸,无刷电…

【无人机设计与控制】 基于matlab的蚁群算法优化无人机uav巡检

摘要 本文使用蚁群算法(ACO)优化无人机(UAV)巡检路径。无人机巡检任务要求高效覆盖特定区域,以最小化能源消耗和时间。本研究提出的算法通过仿生蚁群算法优化巡检路径,在全局搜索和局部搜索中平衡探索与开…

【软件工程】成本效益分析

一、成本分析目的 二、成本估算方法 三、成本效益分析方法 课堂小结 例题 选择题

深度之眼(三十)——pytorch(一)--深入浅出pytorch(附安装流程)

文章目录 一、前言一、pytoch二、六个部分三、如何学习四、学习路径(重要)五、安装pytorch5.1 坑15.2 坑2 一、前言 我看了下目录 第一章和第二章都是本科学的数字图像处理。 也就是这一专栏:数字图像实验。 所以就不准备学习前两章了,直接…

一文详解大语言模型Transformer结构

目录 1. 什么是Transformer 2. Transformer结构 2.1 总体结构 2.2 Encoder层结构 2.3 Decoder层结构 2.4 动态流程图 3. Transformer为什么需要进行Multi-head Attention 4. Transformer相比于RNN/LSTM,有什么优势?为什么? 5. 为什么说Transf…

MySQL --数据类型

文章目录 1.数据类型分类2.数值类型2.1 tinyint类型2.2 bit类型2.3小数类型2.31float2.32decimal 3.字符串类型3.1 char3.2varchar3.3 char和varchar比较 4.日期和时间类型5.enum和set 1.数据类型分类 2.数值类型 2.1 tinyint类型 数值越界测试: create table tt1…

C++ Qt 之 QPushButton 好看的样式效果实践

文章目录 1.前序2.效果演示3.代码如下 1.前序 启发于 edge 更新 web 页面,觉得人家做的体验挺好 决定在Qt实现,方便以后使用 2.效果演示 特性介绍: 默认蓝色鼠标移入 渐变色,鼠标变为小手鼠标移出 恢复蓝色,鼠标恢…

计算机毕业设计之:基于uni-app的校园活动信息共享系统设计与实现(三端开发,安卓前端+网站前端+网站后端)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…