C语言深入理解指针(四)

news2025/1/8 23:18:48

目录

  • 字符指针变量
  • 数组指针变量
    • 数组指针变量是什么
    • 数组指针变量怎么初始化
  • 二维数组传参的本质
  • 函数指针变量
    • 函数指针变量的创建
    • 函数指针变量的使用
    • 代码
      • typedef关键字
  • 函数指针数组
  • 转移表

字符指针变量

字符指针在之前我们有提到过,(字符)(指针)前面的字符代表着存储的元素为字符类型,而指针则是表示这存储的方式。
写法为char
*
一般使用的方式如下:

nt main()
{
char ch = 'w';
char *pc = &ch;
*pc = 'w';
return 0;
}

还有一种使用方式如下:

int main()
{
const char* pstr = "hello jack.";
printf("%s\n", pstr);
return 0;
}

值得注意的是:代码 const char pstr = “hello jack.”; 特别容易以为是把字符串 hello jack 放到字符指针 pstr 里了,但是本质是把字符串 hello jack. 首字符的地址放到了pstr中*
《剑指offer》中有一道和字符串有关的题如下:

#include <stdio.h>
int main()
{
char str1[] = "hello jack.";
char str2[] = "hello jack.";
const char *str3 = "hello jack.";
const char *str4 = "hello jack.";
if(str1 ==str2)
printf("str1 and str2 are same\n");
else
printf("str1 and str2 are not same\n");
if(str3 ==str4)
printf("str3 and str4 are same\n");
else
printf("str3 and str4 are not same\n");
return 0;
}

在这里插入图片描述
这里的char str1[]和charstr2[]在创造时是单独开辟了一个储存空间,因此二者的储存地址是不同的
所以打印出来的是str1 and str2 are not same

char str3和charstr4中因为带有了指针,因此指针指向的字符串hello jack是已经单独创造了一个储存空间,而str3和str4则是存储字符串的储存地址,因此最后是str3 and str4 are same

数组指针变量

数组指针变量是什么

之前的是指针数组,现在的数组指针其实理解方式是相同的(数组)(指针),储存的元素是数组,而储存的方式就是通过指针储存数组的地址
我们举一些其他熟悉的例子:
整形指针变量: int * pint; 存放的是整形变量的地址,能够指向整形数据的指针
浮点型指针变量: float * pf; 存放浮点型变量的地址,能够指向浮点型数据的指针

下面代码哪个是数组指针变量?

1int *p1[10];
2int (*p2)[10];

. * p1[10]是指针数组
( * p2)[10]是数组指针
我们发现这二者的差别就在于括号,指针数组是没有括号的,而数组指针是有括号的,我们可以这样理解
* || p [10]我们把指针数组分开,一个是指针*,一个是数组p[10],表示数组p[10]里面存放的是指针
(* p)|| [10]我们可以看到p和结合起来了,因此可以理解为将数组p的地址通过指针的形式存放起来

数组指针变量怎么初始化

数组指针变量是用来存放数组地址的,那怎么获得数组的地址呢?就是我们之前学习的 &数组名

int arr[10]={0}&arr//取的是整个数组的地址

如果要存放个数组的地址,就得存放在数组指针变量中,如下:

int(*p)[10]=&arr;

在这里插入图片描述
我们通过调试可以看到,p和&arr的内存地址是一样的
我们对int (*p)[10]=&arr进行解析
int(*p)[10] = &arr
| ___ | ___ | ___ |
| ___ | ___ | ___ |
| ___ | ___ | ___ 整个数组的地址
| ___ | ___ p指向数组的元素个数
| ___ p是数组指针的变量名
p指向的数组的元素类型

二维数组传参的本质

过去我们有一个二维数组的需要传参给一个函数的时候,我们是这样写的

#include <stdio.h>
void test(int a[3][5], int r, int c)
{
int i = 0;
int j = 0;
for(i=0; i<r; i++)
{
for(j=0; j<c; j++)
{
printf("%d ", a[i][j]);
}
printf("\n");
}
}
int main()
{
int arr[3][5] = {{1,2,3,4,5}, {2,3,4,5,6},{3,4,5,6,7}};
test(arr, 3, 5);//arr传的是数组首元素地址
return 0;
}

这里实参是二维数组,形参也写成二维数组的形式,那还有什么其他的写法吗?

首先我们再次理解一下二维数组,二维数组起始可以看做是每个元素是一维数组的数组,也就是二维数组的每个元素是一个一维数组。那么二维数组的首元素就是第一行,是一个维数组

所以,根据数组名是数组首元素的地址这个规则,二维数组的数组名表示的就是第一行的地址,是一维数组的地址
根据上面的例子,第一行的一维数组的类型就是 int [5] ,所以第一行的地址的类型就是数组指针类型 int(*)[5] 。
那就意味着二维数组传参本质上也是传递了地址,传递的是第一行这个一维数组的地址,那么形参也是可以写成指针形式的。如下:

#include <stdio.h>
void test(int (*p)[5], int r, int c)
{
int i = 0;
int j = 0;
for(i=0; i<r; i++)
{
for(j=0; j<c; j++)
{
printf("%d ", *(*(p+i)+j));
}
printf("\n");
}
}
int main()
{
int arr[3][5] = {{1,2,3,4,5}, {2,3,4,5,6},{3,4,5,6,7}};
test(arr, 3, 5);
return 0;
}

可能会有人感到疑惑,为什么不是指针数组呢?我来谈谈我个人的理解:
我们再来回顾一下指针数组的含义:
指针数组是数组里面存放的指针也就是地址,好像和二维数组存放一维数组的地址是一样的.
但是当我们传递参数时我们发现传递的是指针的地址,而不是一维数组的地址,也就是说因为指针是存放的一维数组的地址,而如果我们用了指针数组的话,我们就是取了指针的地址

总结:二维数组传参,形参的部分可以写成数组,也可以写成指针形式

函数指针变量

函数指针变量的创建

什么是函数指针变量呢?
根据前面学习整型指针,数组指针的时候,我们的类比关系,我们不难得出结论:
函数指针变量应该是用来存放函数地址的,未来通过地址能够调用函数的
那么函数是否有地址呢?
我们做个测试:

#include <stdio.h>
void test()
{
printf("hehe\n");
}
int main()
{
printf("test: %p\n", test);
printf("&test: %p\n", &test);
return 0;
}

运行结果如下:
在这里插入图片描述
确实打印出来了地址,所以函数是有地址的,函数名就是函数的地址,当然也可以通过 &函数名 的方式获得函数的地址。
如果我们要将函数的地址存放起来,就得创建函数指针变量,函数指针变量的写法其实和数组指针非常类似
。如下:

void test()
{
printf("hehe\n");
}
void (*pf1)() = &test;
void (*pf2)()= test;
int Add(int x, int y)
{
return x+y;
}
int(*pf3)(int, int) = Add;
int(*pf3)(int x, int y) = &Add;//x和y写上或者省略都是可以的,我们只需要函数参数的类型即可

我们对int (*pf3)[int x,int y]进行解析
int(*pf3)[int x,int y]
| ___ | ___ ___ |
| ___ | ___ ___ |
| ___ | ___ ___ |
| ___ | ___ ___ pf3指向函数的参数类型和个数的交代
| ___ 函数指针变量名
pf3指向函数的返回类型
int ( * ) (int x, int y) //pf3函数指针变量的类型

函数指针变量的使用

通过函数指针调用指针指向的函数

#include <stdio.h>
int Add(int x, int y)
{
return x+y;
}
int main()
{
int(*pf3)(int, int) = Add;
printf("%d\n", (*pf3)(2, 3));
printf("%d\n", pf3(3, 5));
return 0;
}

运行结果如下:
在这里插入图片描述

代码

代码1:
(*(void (*)())0)();
代码2:
void (*signal(int , void(*)(int)))(int);

代码1:我们分布解析:( * (void ( * )( ) ) 0 )()可以拆成(a)(),a=( void ( * ) ( ) )0
我们先分析a,首先我们看到void(
)()就应该想到这是一个返回类型为void的函数类型,并且括号将*号括了起来,说明这是函数指针,而那个0可能会把我们头都搞大,但是我们举一个例子

int a=0;
char b='A';
int c=a+(int)b;

这是强制类型转换,也就是说0被强制转换为一个返回值为void,参数为空的函数指针
而(*a)()又是一个函数指针,因此这段代码有两个函数指针

代码2:
void (*signal(int , void ( * )(int)))(int)我们依然将代码才分开:
void( * a)(int)
a=signal(int,b)
b=void( *)(int)
显然这几个都是函数,第一个和第三个都为函数指针,第二个b为void返回类型的函数,然后a的参数包含了int 和void,返回类型为signal

typedef关键字

typedef是用来类型重命名的,可以将复杂的类型,简单化,也可以理解为设置一个代号,方便理解并且减少代码的长度
比如,你觉得 unsigned int 写起来不方便,如果能写成 uint 就方便多了,那么我们可以使用:

typedef unsigned int uint;
//这里感觉和define有点类似
define a 8

如果是指针类型,能否重命名呢?其实也是可以的,比如,将 int* 重命名为 ptr_t ,这样写

typedef int* ptr_t

但是对于数组指针和函数指针稍微有点区别
比如我们有数组指针类型 int(*)[5] ,需要重命名为 parr_t ,那可以这样写

typedef int(*parr_t)[5]; //新的类型名必须在*的右边

函数指针类型的重命名也是一样的,比如,将 void(*)(int) 类型重命名为 pf_t ,就可以这样写:

typedef void(*pfun_t)(int);//新的类型名必须在*的右边
要简化代码,可以这样写
typedef void(*pfun_t)(int);
pfun_t signal(int, pfun_t);

这里面其实有一些规律,我们设置新的类型名时,都会将类型名写在函数的变量中

函数指针数组

数组是一个存放相同类型数据的存储空间,我们已经学习了指针数组
比如:

int *arr[10];
//数组的每个元素是int*

那要把函数的地址存到一个数组中,那这个数组就叫函数指针数组,那函数指针的数组如何定义呢?

int (*parr1[3])();
int *parr2[3]();
int (*)() parr3[3];

parr1 先和 [ ] 结合,说明parr1是数组,数组的内容是什么呢?
是 int (*)() 类型的函数指针。

转移表

函数指针数组的用途:转移表

#include <stdio.h>
int add(int a, int b)
{
return a + b;
}
int sub(int a, int b)
{
return a - b;
}
int mul(int a, int b)
{
return a * b;
}
int div(int a, int b)
{
return a / b;
}
int main()
{
int x, y;
int input = 1;
int ret = 0;
do
{
printf("*************************\n");
printf(" 1:add 2:sub \n");
printf(" 3:mul 4:div \n");
printf(" 0:exit \n");
printf("*************************\n");
printf("请选择:");
scanf("%d", &input);
switch (input)
{
case 1:
printf("输⼊操作数:");
scanf("%d %d", &x, &y);
ret = add(x, y);
printf("ret = %d\n", ret);
break;
case 2:
printf("输⼊操作数:");
scanf("%d %d", &x, &y);
ret = sub(x, y);
printf("ret = %d\n", ret);
break;
case 3:
printf("输⼊操作数:");
scanf("%d %d", &x, &y);
ret = mul(x, y);
printf("ret = %d\n", ret);
break;
case 4:
printf("输⼊操作数:");
scanf("%d %d", &x, &y);
ret = div(x, y);
printf("ret = %d\n", ret);
break;
case 0:
printf("退出程序\n");
break;
default:
printf("选择错误\n");
break;
}
} while (input);
return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2155901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

5.MySQL表的约束

目录 表的约束空属性&#xff08;非空约束&#xff09;默认值&#xff08;default约束&#xff09;列描述&#xff08;comment&#xff09;zerofill主键&#xff08;primary key约束&#xff09;自增长唯一键&#xff08;unique约束&#xff09;外键 表的约束 如果我自由自在的…

MySQL(日志)

日志 日志分为三种&#xff1a; undo log &#xff08;回滚日志&#xff09;&#xff1a;用于事务回滚和MVCC redo log &#xff08;重做日志&#xff09;&#xff1a;用于故障恢复 binlog &#xff08;归档日志&#xff09;&#xff1a;用于数据备份和主从复制 undo log undo…

qt-C++笔记之作用等同的宏和关键字

qt-C笔记之作用等同的宏和关键字 code review! Q_SLOT 和 slots&#xff1a; Q_SLOT是slots的替代宏&#xff0c;用于声明槽函数。 Q_SIGNAL 和 signals&#xff1a; Q_SIGNAL类似于signals&#xff0c;用于声明信号。 Q_EMIT 和 emit&#xff1a; Q_EMIT 是 Qt 中用于发射…

Tomcat 靶场攻略

CVE-2017-12615 步骤一&#xff1a;环境搭建 cd vulhub/tomcat/CVE-2017-12615 docker-compose up -d docker ps 步骤二&#xff1a;漏洞复现 http://192.168.10.190:8080/ 步骤二&#xff1a;首页进行抓包 Tomcat允许适⽤put⽅法上传任意⽂件类型&#xff0c;但不允许js…

安卓13去掉下拉菜单的Dump SysUI 堆的选项 android13删除Dump SysUI 堆

总纲 android13 rom 开发总纲说明 文章目录 1.前言2.问题分析3.代码分析3.1 位置13.2 位置24.代码修改5.编译6.彩蛋1.前言 客户需要去掉下拉菜单里面的Dump SysUI 堆图标,不让使用这个功能。 2.问题分析 android的下拉菜单在systemui里面,这里我们只需要定位到对应的添加代…

【优选算法之二分查找】No.5--- 经典二分查找算法

文章目录 前言一、二分查找模板&#xff1a;1.1 朴素二分查找模板1.2 查找区间左端点模板1.3 查找区间右端点模板 二、二分查找示例&#xff1a;2.1 ⼆分查找2.2 在排序数组中查找元素的第⼀个和最后⼀个位置2.3 搜索插⼊位置2.4 x 的平⽅根2.5 ⼭脉数组的峰顶索引2.6 寻找峰值…

Linux自主学习篇

用户及权限管理 sudo 是 "superuser do" 的缩写&#xff0c;是一个在类 Unix 操作系统&#xff08;如 Linux 和 macOS&#xff09;中使用的命令。它允许普通用户以超级用户&#xff08;root 用户&#xff09;的身份执行命令&#xff0c;从而获得更高的权限。 useradd…

多模态交互才是人机交互的未来

交互方式 在探讨文字交流、语音交流和界面交流的效率时&#xff0c;我们可以看到每种方式都有其独特的优势和局限性。文字交流便于记录和回溯&#xff0c;语音交流则在表达情绪和非语言信息方面更为高效&#xff0c;而界面交流则依赖于图形用户界面&#xff08;GUI&#xff09…

<<编码>> 第 16 章 存储器组织(4)--内存 示例电路

内存内部结构 info::操作说明 译码器用于写入, 操作同上 选择器用于输出, 操作同上 地址信号同时控制译码器和选择器, 注意地址的高位在右(比如 001 实际是 100, 选择的是 Q6 和 I6) 缺省情况下, 内部数据全是 0. 读者可先通过译码器写入, 再通过选择器输出 primary::在线交…

初学者的鸿蒙多线程并发之 TaskPool 踩坑之旅

1. 背景 目标群体&#xff1a;鸿蒙初学者 版本&#xff1a;HarmonyOS 3.1/4.0 背景&#xff1a;鸿蒙 App 的全局路由管理功能&#xff0c;需要在 App 启动时初始化对 raw 下的相关配置文件进行读取、解析并缓存。App 启动时涉及到了大量模块的初始化&#xff0c;好多模块都涉…

【machine learning-15-如何判定梯度下降是否在收敛】

我们在运行梯度下降的时候&#xff0c;如何判定梯度下降是否在收敛呢&#xff1f; 梯度下降的时候&#xff0c;权重和偏置根据如下的公式同时更新&#xff1a; 程序要做的就是更新w 和 b&#xff0c;让梯度下降尽快的收敛&#xff0c;但是如何判定正在收敛呢&#xff1f; 方法…

关于神经网络的一个介绍

这篇文章中&#xff0c;我将简单介绍下与神经网络有关的东西&#xff0c;包括它的基本模型&#xff0c;典型的算法以及与深度学习的联系等内容。 一、神经元 神经网络是由许多个神经元组成的&#xff0c;在生物的神经网络中&#xff0c;就是神经元间相互连接&#xff0c;传递…

Arthas getstatic(查看类的静态属性 )

文章目录 二、命令列表2.1 jvm相关命令### 2.1.7 getstatic&#xff08;查看类的静态属性 &#xff09; 二、命令列表 2.1 jvm相关命令 ### 2.1.7 getstatic&#xff08;查看类的静态属性 &#xff09; 使用场景&#xff1a; 我们项目部署在linux上&#xff0c;我有个本地内存…

从一到无穷大 #35 Velox Parquet Reader 能力边界

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作)&#xff0c;由 李兆龙 确认&#xff0c;转载请注明版权。 文章目录 引言源码分析功能描述功能展望 引言 InfluxDB IOX这样完全不使用索引&#xff0c;只…

《沧浪之水》读后感

未完待续..... 未完待续.... 未完待续.... 【经典语录】 01、我一辈子的经验就是不要做瞎子&#xff0c;也不能做聋子&#xff0c;该听到的信息要听到&#xff0c;但是要做哑巴&#xff0c;看到了听到了心中有数就行了&#xff0c;可千万不要张口说什么。 02、你刚从学校毕业…

MQ入门(一):同步调用和异步调用--RabbitMQ基础入门

目录 1.初识MQ 1.1.同步调用 1.2.异步调用 1.3.技术选型 2.RabbitMQ 2.1.安装部署 2.2.RabbitMQ基本架构 2.3.收发消息 2.3.1.交换机 2.3.2.队列 2.3.3.绑定关系 2.3.4.发送消息 2.4.数据隔离 2.4.1.用户管理 2.4.2.virtual host 1.初识MQ 微服务一旦拆分&…

web前端字段大小写下划线转换工具

文章目录 前言一、如何使用&#xff1f;二、相关代码总结 前言 程序员在敲代码的过程中都要命名一些字段&#xff0c;但是Java语言对字段的命名规范和sql命名规范不一样&#xff0c;如下图所示&#xff0c;这种机械性的转换工作很劳神费力&#xff0c;为了省点劲写了一个web小…

尚品汇-Jenkins部署构建服务模块、Linux快照备份(五十七)

目录&#xff1a; &#xff08;1&#xff09;构建作业&#xff08;server-gateway&#xff09; &#xff08;2&#xff09;构建service_product模块 &#xff08;3&#xff09;演示添加新代码 &#xff08;4&#xff09;学会使用linux快照 &#xff08;1&#xff09;构建作…

在SpringCloud中实现服务间链路追踪

在微服务架构中&#xff0c;由于系统的复杂性和多样性&#xff0c;往往会涉及到多个服务之间的调用。当一个请求经过多个服务时&#xff0c;如果出现问题&#xff0c;我们希望能够快速定位问题所在。这就需要引入链路追踪机制&#xff0c;帮助我们定位问题。 Spring Cloud为我们…

【沪圈游戏公司作品井喷,游戏产业复兴近在眼前】

近期财报季中&#xff0c;腾讯、网易及B站等国内游戏巨头纷纷亮出亮眼的游戏业务表现&#xff0c;均实现了接近或超越双位数的同比增长。然而&#xff0c;审视过去一年&#xff0c;国内游戏行业仍笼罩在宏观经济“降本增效”的阴影下。 行业数据揭示&#xff0c;全国游戏公司社…