洪涝洪水滑坡灾害数据集 灾害 2300张 带标注 voc yolo

news2025/1/14 18:35:43

 洪涝洪水滑坡灾害数据集 灾害 2300张 带标注 voc yolo

洪涝洪水滑坡灾害数据集

数据集描述

该数据集是一个专门用于检测和识别洪涝、洪水和滑坡等自然灾害的数据集,旨在帮助研究人员和开发者训练和评估基于深度学习的目标检测模型。数据集涵盖了两种常见的自然灾害类型:洪涝(Flood)和滑坡(Landslide)。通过高质量的图像和详细的标注信息,该数据集为开发高效且准确的灾害检测系统提供了坚实的基础。

数据规模

  • 总样本数量:2,339张图片
    • 洪涝 (Flood):1,902张图片(2,711个标注)
    • 滑坡 (Landslide):437张图片(509个标注)
  • 总标注数量:3,220个
  • 标注格式:Pascal VOC XML格式
  • 目标类别
    • 洪涝 (Flood)
    • 滑坡 (Landslide)
图像特性

  • 多样化场景:覆盖了不同类型的自然灾害,在各种环境和背景下的图像情况。
  • 高质量手工标注:每张图像都有详细的边界框标注,支持直接用于训练目标检测模型。
  • 真实拍摄:所有图像均为实际拍摄的真实场景,增强了模型在实际应用中的鲁棒性。
  • 多类别支持:包含两种不同的自然灾害类型,丰富了数据集的多样性。
  • 无需预处理:数据集已经过处理,可以直接用于训练,无需额外的数据预处理步骤。
应用场景
  • 灾害监测与预警:自动检测和识别洪涝和滑坡等自然灾害,辅助相关部门及时发现并采取应对措施,减少灾害损失。
  • 智能监控:集成到无人机或卫星遥感系统中,实现自动化监测,提高监测效率。
  • 科研分析:用于研究目标检测算法在特定自然灾害应用场景中的表现,特别是在复杂背景和光照条件下的鲁棒性。
  • 应急响应:通过早期检测自然灾害,提前预警潜在风险,协助应急响应部门快速做出决策。

数据集结构

1flood_landslide_dataset/
2├── images/
3│   ├── img_00001.jpg
4│   ├── img_00002.jpg
5│   └── ...
6├── annotations/
7│   ├── img_00001.xml
8│   ├── img_00002.xml
9│   └── ...
10├── README.txt  # 数据说明文件

数据说明

  • 检测目标:以Pascal VOC XML格式进行标注。
  • 数据集内容
    • 总共2,339张图片,每张图片都带有相应的XML标注文件。
  • 目标标签:共包含2大类自然灾害。
  • 数据增广:数据集未做数据增广,用户可以根据需要自行进行数据增广。
  • 无需预处理:数据集已经过处理,可以直接用于训练,无需额外的数据预处理步骤。

示例代码

以下是一个使用Python和相关库(如OpenCV、PIL等)来加载和展示数据集的简单示例代码:

1import os
2import cv2
3import numpy as np
4from PIL import Image
5import xml.etree.ElementTree as ET
6
7# 数据集路径
8dataset_path = 'path/to/flood_landslide_dataset/'
9
10# 加载图像和边界框标注
11def load_image_and_boxes(image_path, annotation_path):
12    # 读取图像
13    image = Image.open(image_path).convert('RGB')
14    
15    # 解析Pascal VOC格式的XML标注文件
16    tree = ET.parse(annotation_path)
17    root = tree.getroot()
18    boxes = []
19    for obj in root.findall('object'):
20        class_name = obj.find('name').text
21        bbox = obj.find('bndbox')
22        xmin = int(bbox.find('xmin').text)
23        ymin = int(bbox.find('ymin').text)
24        xmax = int(bbox.find('xmax').text)
25        ymax = int(bbox.find('ymax').text)
26        boxes.append([class_name, xmin, ymin, xmax, ymax])
27    
28    return image, boxes
29
30# 展示图像和边界框
31def show_image_with_boxes(image, boxes):
32    img = np.array(image)
33    for box in boxes:
34        class_name, xmin, ymin, xmax, ymax = box
35        cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
36        label = f'{class_name}'
37        cv2.putText(img, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
38    
39    cv2.imshow('Image with Boxes', img)
40    cv2.waitKey(0)
41    cv2.destroyAllWindows()
42
43# 主函数
44if __name__ == "__main__":
45    images_dir = os.path.join(dataset_path, 'images')
46    annotations_dir = os.path.join(dataset_path, 'annotations')
47    
48    # 获取图像列表
49    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
50    
51    # 随机选择一张图像
52    selected_image = np.random.choice(image_files)
53    image_path = os.path.join(images_dir, selected_image)
54    annotation_path = os.path.join(annotations_dir, selected_image.replace('.jpg', '.xml'))
55    
56    # 加载图像和边界框
57    image, boxes = load_image_and_boxes(image_path, annotation_path)
58    
59    # 展示带有边界框的图像
60    show_image_with_boxes(image, boxes)

这段代码展示了如何加载图像和其对应的边界框标注文件,并在图像上绘制边界框。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。

训练结果与改进方向

如果您已经使用YOLOv3、YOLOv5等模型对该数据集进行了训练,并且认为还有改进空间,以下是一些可能的改进方向:

  1. 数据增强

    • 进一步增加数据增强策略,例如旋转、翻转、缩放、颜色抖动等,以提高模型的泛化能力。
    • 使用混合增强技术,如MixUp、CutMix等,以增加数据多样性。
  2. 模型优化

    • 调整模型超参数,例如学习率、批量大小、优化器等,以找到最佳配置。
    • 尝试使用不同的骨干网络(Backbone),例如EfficientNet、ResNet等,以提高特征提取能力。
    • 引入注意力机制,如SENet、CBAM等,以增强模型对关键区域的关注。
  3. 损失函数

    • 尝试使用不同的损失函数,例如Focal Loss、IoU Loss等,以改善模型的收敛性能。
    • 结合多种损失函数,例如分类损失和回归损失的组合,以平衡不同类型的任务。
  4. 后处理

    • 使用非极大值抑制(NMS)的改进版本,如Soft-NMS、DIoU-NMS等,以提高检测结果的质量。
    • 引入边界框回归的改进方法,如GIoU、CIoU等,以提高定位精度。
  5. 迁移学习

    • 使用预训练模型进行微调,利用大规模数据集(如COCO、ImageNet)上的预训练权重,加快收敛速度并提高性能。
  6. 集成学习

    • 使用多个模型进行集成学习,通过投票或加权平均的方式提高最终的检测效果。

通过上述方法,可以进一步提升模型在洪涝和滑坡灾害检测任务上的性能。如果您需要具体的代码示例或更详细的指导,请告诉我,我可以为您提供更多的帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2154901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【shell脚本4】Shell脚本学习--字符串和数组

目录 字符串 拼接字符串 获取字符串长度 截取字符串 查找字符串 数组 总结 字符串 字符串是shell编程中最常用最有用的数据类型(除了数字和字符串,也没啥其它类型好用了),字符串可以用单引号,也可以用双引号&am…

WinRAR技巧:如何高效制作RAR分卷压缩文件

RAR分卷压缩是一种将大文件分割成多个较小文件的技术,便于在存储空间有限或网络传输条件受限的情况下传输和存储。本文将详细介绍如何使用WinRAR压缩软件来制作RAR分卷压缩文件。 我们先将压缩包内的文件解压出来,然后查看一下,然后打开WinR…

OceanBase 的并发简述笔记

OceanBase的并发简述笔记一、并发说明 OceanBase的并发分为并发DDL、并发DML。并分为分区并行与分区内并行。 一个CPU 可以运行多个线程(时间片段)。 (租户)min_cpu*(集群)px_workers_per_cpu_quota 租户可拥有的线程数 二、数据分发与数据重分布 数据分发: Parti…

C++ | Leetcode C++题解之第413题等差数列划分

题目&#xff1a; 题解&#xff1a; class Solution { public:int numberOfArithmeticSlices(vector<int>& nums) {int n nums.size();if (n 1) {return 0;}int d nums[0] - nums[1], t 0;int ans 0;// 因为等差数列的长度至少为 3&#xff0c;所以可以从 i2 开…

ps学习。

有大量的图要扣&#xff0c;淘宝5-15块扣一个&#xff0c;尽管蛮便宜的&#xff0c;但是架不住量大啊&#xff0c;还是好好ps&#xff0c;也能省一大笔钱。 填充 在这里有个油漆桶&#xff0c;一开始也叫渐变色&#xff0c;堆放在一起了&#xff0c;我觉得这不是个好设计。。…

第100+25步 ChatGPT学习:概率校准 Histogram Binning

基于Python 3.9版本演示 一、写在前面 最近看了一篇在Lancet子刊《eClinicalMedicine》上发表的机器学习分类的文章&#xff1a;《Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learn…

Dify 中的讯飞星火平台工具源码分析

本文主要对 Dify 中的讯飞星火平台工具 spark 进行了源码分析&#xff0c;该工具可根据用户的输入生成图片&#xff0c;由讯飞星火提供图片生成 API。通过本文学习可自行实现将第三方 API 封装为 Dify 中工具的能力。 源码位置&#xff1a;dify-0.6.14\api\core\tools\provide…

巨潮股票爬虫逆向

目标网站 aHR0cDovL3dlYmFwaS5jbmluZm8uY29tLmNuLyMvSVBPTGlzdD9tYXJrZXQ9c3o 一、抓包分析 请求头参数加密 二、逆向分析 下xhr断点 参数生成位置 发现是AES加密&#xff0c;不过是混淆的&#xff0c;但并不影响咱们扣代码 文章仅提供技术交流学习&#xff0c;不可对目标服…

Java 分布式锁:原理与实践

在分布式系统中&#xff0c;多个节点同时操作共享资源的情况非常普遍。为了保证数据的一致性&#xff0c;分布式锁 应运而生。分布式锁 是一种跨多个服务器的互斥锁&#xff0c;用于协调分布式环境下的资源访问。 本文将介绍 Java 实现分布式锁 的几种常见方式&#xff0c;并结…

基于VUE的医院抗生素使用审核流程信息化管理系统

开发背景 随着医疗行业的快速发展和信息技术的不断进步&#xff0c;医院内部管理系统的信息化建设变得尤为重要。抗生素作为治疗感染性疾病的重要药物&#xff0c;在临床使用过程中需要严格控制以避免滥用导致的耐药性问题。传统的抗生素使用审核流程往往依赖于人工审核&#x…

一,初始 MyBatis-Plus

一&#xff0c;初始 MyBatis-Plus 文章目录 一&#xff0c;初始 MyBatis-Plus1. MyBatis-Plus 的概述2. 入门配置第一个 MyBatis-Plus 案例3. 补充说明&#xff1a;3.1 通用 Mapper 接口介绍3.1.1 Mapper 接口的 “增删改查”3.1.1.1 查询所有记录3.1.1.2 插入一条数据3.1.1.3 …

推荐3个AI论文、AI查重、AI降重工具

什么是AI论文、AI查重、AI降重工具&#xff1f; AI论文 AI论文指的是以人工智能&#xff08;AI&#xff09;相关主题为研究对象的学术论文。这类论文通常包含以下内容&#xff1a; 研究问题&#xff1a;针对某个特定的AI问题或领域的研究。方法&#xff1a;介绍用于解决问题…

UnLua实现继承

一、在蓝图中实现继承 1、创建父类&#xff0c;并绑定Lua脚本 2、创建子类蓝图&#xff0c;如果先创建的子类&#xff0c;可以修改父类继承 注意&#xff0c;提示选择继承父类的接口&#xff01; 二、在Lua中实现继承 1、在父类Lua脚本中实现函数 BP_CharacterBase.lua func…

SysML图例-智能家居

DDD领域驱动设计批评文集>> 《软件方法》强化自测题集>> 《软件方法》各章合集>>

spring boot(学习笔记第二十课) vue + spring boot前后端分离项目练习

spring boot(学习笔记第二十课) vue spring boot前后端分离项目练习 学习内容&#xff1a; 后端程序构建前端程序构建 1. 后端程序构建 前后端分离结构 前后端就是前端程序和后端程序独立搭建&#xff0c;通过Restful API进行交互&#xff0c;进行松耦合的设计。后端程序构建…

【吊打面试官系列-MySQL面试题】MySQL_fetch_array 和 MySQL_fetch_object 的区别是什么?

大家好&#xff0c;我是锋哥。今天分享关于【MySQL_fetch_array 和 MySQL_fetch_object 的区别是什么&#xff1f;】面试题&#xff0c;希望对大家有帮助&#xff1b; MySQL_fetch_array 和 MySQL_fetch_object 的区别是什么&#xff1f; 以下是 MySQL_fetch_array 和 MySQL_fe…

VisionPro - 基础 - 模板匹配技术和在VP中的使用 - PMAlign - PatMax (5)- 非线性模板变形匹配

前言&#xff1a; 本机继续对VP的PatMax 算子进行说明&#xff1a;本节讲非线性变形的模板匹配。 Non-Linear Pattern Deformation By default, PatMax requires that each boundary point in the instance of a pattern found in a run-time image closely correspond to a b…

低空经济火爆,稀缺无人机教员培训详解

随着科技的飞速发展和低空经济的日益火爆&#xff0c;无人机技术已广泛应用于航拍、农业、物流、救援、环境监测等多个领域&#xff0c;成为推动社会经济发展的新引擎。然而&#xff0c;无人机行业的快速发展也催生了对专业无人机教员的迫切需求。本文将从基础理论学习、实操技…

[Redis][List]详细讲解

目录 0.前言1.常用命令1.LPUSH / RPUSH2.LPUSHX / RPUSHX3.LRANGE4.LPOP / RPOP5.LINDEX6.LINSERT7.LLEN8.LREM9.LTRIM10.LSET 2.阻塞版本命令0.是什么&#xff1f;1.BLPOP / BRPOP 3.内部编码(旧版本&#xff0c;仅供参考)1.ziplist(压缩链表)2.linkedlist(链表)3.quicklist(快…

yolov8旋转目标检测之绝缘子检测-从数据加载到模型训练、部署

YOLOv8 是 YOLO (You Only Look Once) 系列目标检测算法的最新版本&#xff0c;以其高速度和高精度而著称。在电力行业中&#xff0c;绝缘子是电力传输线路上的重要组件之一&#xff0c;它们用于支撑导线并保持电气绝缘。由于长期暴露在户外环境中&#xff0c;绝缘子容易出现损…