回归预测 | Matlab实现ReliefF-XGBoost多变量回归预测
目录
- 回归预测 | Matlab实现ReliefF-XGBoost多变量回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
1.ReliefF-xgboost回归预测代码,对序列数据预测性能相对较高。首先通过ReleifF对输入特征计算权重排序后筛选,再通过xgboost模型预测输出。数据是excel格式。
2.运行环境为Matlab2021b;
3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价;
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整源码和数据获取方式私信回复Matlab实现ReliefF-XGBoos多变量回归预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
f_ = size(P_train, 1); % 输入特征维度
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%% 设置参数
num_trees = 100; % 树的数量
params.objective = 'reg:linear'; % 线性函数
params.max_depth = 5; % 最大深度
%% 建立模型
model = xgboost_train(p_train, t_train, params, num_trees);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 预测
t_sim1 = xgboost_test(p_train, model);
t_sim2 = xgboost_test(p_test, model);
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1', p_output);
T_sim2 = mapminmax('reverse', t_sim2', p_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% V. 评价指标
%% 均方根误差 RMSE
error1 = sqrt(sum((T_sim1(1,:) - T_train(1,:)).^2)./M);
error2 = sqrt(sum((T_test(1,:) - T_sim2(1,:)).^2)./N);
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/128107434
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718