RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验

news2024/11/15 12:49:41

1.RAGflow简介

    • 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。
    • 大语言模型 LLM 以及向量模型均支持配置。
    • 基于多路召回、融合重排序。
    • 提供易用的 API,可以轻松集成到各类企业系统。
    • 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据、网页等。
    • 文本切片过程可视化,支持手动调整。
    • 有理有据:答案提供关键引用的快照并支持追根溯源。
    • 不仅仅是智能,更重要的是可控可解释。
    • 多种文本模板可供选择
    • 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。
    • 真正在无限上下文(token)的场景下快速完成大海捞针测试。
    • “Quality in, quality out”
    • 基于模板的文本切片
    • 有理有据、最大程度降低幻觉(hallucination)
    • 兼容各类异构数据源
    • 自动化的 RAG 工作流

图片

图片

  • 系统架构

图片

2.快速开始

  • 环节要求

    • CPU >= 4 核

    • RAM >= 16 GB

    • Disk >= 50 GB

    • Docker >= 24.0.0 & Docker Compose >= v2.26.1

      如果你并没有在本机安装 Docker(Windows、Mac,或者 Linux), 可以参考文档 Install Docker Engine 自行安装。

2.1 启动服务器

vm.max_map_count是Linux内核中的一个重要参数,它定义了一个进程可以拥有的最大内存映射区域数。内存映射区域通常指的是内存映射文件、匿名内存映射等。

  • 性能优化:通过增加vm.max_map_count的值,可以允许应用程序创建更多的内存映射区域,从而提高性能和效率。特别是对于需要频繁访问大量文件或数据的应用程序,这种优化效果尤为明显。

  • 稳定性保障:如果应用程序尝试创建的内存映射区域数超过了系统设置的限制,可能会导致映射失败,进而引发性能问题或直接导致应用程序崩溃。因此,合理设置vm.max_map_count参数有助于保障系统的稳定性。

  • 设置方法

    • 临时设置:可以通过sysctl命令临时修改vm.max_map_count的值,但这种更改在系统重启后会失效。例如,要将vm.max_map_count的值设置为262144,可以执行sudo sysctl -w vm.max_map_count=262144命令。
    • 永久设置:为了确保在系统重启后vm.max_map_count的值仍然有效,需要将该值写入到/etc/sysctl.conf文件中。添加或更新vm.max_map_count=262144(或其他所需的数值)到该文件中,并保存更改。之后,可以通过执行sudo sysctl -p命令使更改立即生效。
  1. 确保 vm.max_map_count 不小于 262144:

    如需确认 vm.max_map_count 的大小:

    $ sysctl vm.max_map_count
    

    如果 vm.max_map_count 的值小于 262144,可以进行重置:

    # 这里我们设为 262144:
    $ sudo sysctl -w vm.max_map_count=262144
    

    你的改动会在下次系统重启时被重置。如果希望做永久改动,还需要在 /etc/sysctl.conf 文件里把 vm.max_map_count 的值再相应更新一遍:

    vm.max_map_count=262144
    
  2. 克隆仓库:

    $ git clone https://github.com/infiniflow/ragflow.git
    
  3. 进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:

    $ cd ragflow/docker
    $ chmod +x ./entrypoint.sh
    $ docker compose -f docker-compose-CN.yml up -d
    

    请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.11.0,然后运行上述命令。

    核心镜像文件大约 9 GB,可能需要一定时间拉取。请耐心等待。

    镜像拉在太慢的化参考链接:镜像拉去提速

  4. 服务器启动成功后再次确认服务器状态:

    $ docker logs -f ragflow-server
    

    出现以下界面提示说明服务器启动成功:

在这里插入图片描述

如果您跳过这一步系统确认步骤就登录 RAGFlow,你的浏览器有可能会提示 network abnormal网络异常,因为 RAGFlow 可能并未完全启动成功。

  1. 在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。

    上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80)。

  2. 在 service_conf.yaml 文件的 user_default_llm 栏配置 LLM factory,并在 API_KEY 栏填写和你选择的大模型相对应的 API key。

    详见 llm_api_key_setup。

部署遇到问题解决(🔺)

资源不足问题,ES会占用较多资源建议设置大一些

修改.env文件,根据自己内存资源进行设置,我就设置了70G,es默认吃一半

#Increase or decrease based on the available host memory (in bytes)
MEM_LIMIT=72864896288

图片

遇到知识库构建,索引构建卡住无法解析

问题描述:索引构建过程一直卡着,经过排查发现是系统盘空间不够95%+了,报错如下

ApiError('search_phase_execution_exception', meta=ApiResponseMeta(status=503, http_version='1.1', headers={'X-elastic-product': 'Elasticsearch', 'content-type': 'application/vnd.elasticsearch+json;compatible-with=8', 'content-length': '365'}, duration=0.004369974136352539, node=NodeConfig(scheme='http', host='es01', port=9200, path_prefix='', headers={'user-agent': 'elasticsearch-py/8.12.1 (Python/3.11.0; elastic-transport/8.12.0)'}, connections_per_node=10, request_timeout=10.0, http_compress=False, verify_certs=True, ca_certs=None, client_cert=None, client_key=None, ssl_assert_hostname=None, ssl_assert_fingerprint=None, ssl_version=None, ssl_context=None, ssl_show_warn=True, _extras={})), body={'error': {'root_cause': [{'type': 'no_shard_available_action_exception', 'reason': None}], 'type': 'search_phase_execution_exception', 'reason': 'all shards failed', 'phase': 'query', 'grouped': True, 'failed_shards': [{'shard': 0, 'index': 'ragflow_304817a205d211efa4de0242ac160005', 'node': None, 'reason': {'type': 'no_shard_available_action_exception', 'reason': None}}]}, 'status': 503})

  • 如果系统盘空间不够,请对docker迁移

修改Docker默认存储路径参考

迁移后问题解决:

图片

不得不说,ragflow的文档解析能力还挺强的

图片

图片

图片

图片

2.2 系统配置

系统配置涉及以下三份文件:

  • .env:存放一些基本的系统环境变量,比如 SVR_HTTP_PORTMYSQL_PASSWORDMINIO_PASSWORD 等。
  • service_conf.yaml:配置各类后台服务。
  • docker-compose-CN.yml: 系统依赖该文件完成启动。

请务必确保 .env 文件中的变量设置与 service_conf.yaml 文件中的配置保持一致!

./docker/README 文件提供了环境变量设置和服务配置的详细信息。请一定要确保 ./docker/README 文件当中列出来的环境变量的值与 service_conf.yaml 文件当中的系统配置保持一致。

如需更新默认的 HTTP 服务端口(80), 可以在 docker-compose-CN.yml 文件中将配置 80:80 改为 :80

所有系统配置都需要通过系统重启生效:

$ docker compose -f docker-compose-CN.yml up -d

2.3 源码编译、安装 Docker 镜像

如需从源码安装 Docker 镜像:
在这里插入图片描述

2.4 源码启动服务

如需从源码启动服务,请参考以下步骤:

  1. 克隆仓库
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/

  1. 创建虚拟环境(确保已安装 Anaconda 或 Miniconda)
$ conda create -n ragflow python=3.11.0
$ conda activate ragflow
$ pip install -r requirements.txt

如果 cuda > 12.0,需额外执行以下命令:

$ pip uninstall -y onnxruntime-gpu
$ pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/

  1. 拷贝入口脚本并配置环境变量
$ cp docker/entrypoint.sh .
$ vi entrypoint.sh

使用以下命令获取python路径及ragflow项目路径:

$ which python
$ pwd

将上述 which python 的输出作为 PY 的值,将 pwd 的输出作为 PYTHONPATH 的值。

LD_LIBRARY_PATH 如果环境已经配置好,可以注释掉。

在这里插入图片描述

  1. 启动基础服务
$ cd docker
$ docker compose -f docker-compose-base.yml up -d

  1. 检查配置文件 确保docker/.env中的配置与conf/service_conf.yaml中配置一致, service_conf.yaml中相关服务的IP地址与端口应该改成本机IP地址及容器映射出来的端口。
  2. 启动服务
$ chmod +x ./entrypoint.sh
$ bash ./entrypoint.sh

  1. 启动WebUI服务

在这里插入图片描述

  1. 部署WebUI服务

在这里插入图片描述

3. 案例快速实践

3.1 模型接入

  • 商业模型接入:

图片

参考链接:国内大模型LLM选择以及主流大模型快速使用教程

  • ollama接入

图片

参考链接:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化

  • xinference 接入

图片

Xinference实战指南

3.0 知识库构建

图片

TemplateDescriptionFile format
GeneralFiles are consecutively chunked based on a preset chunk token number.DOCX, EXCEL, PPT, PDF, TXT, JPEG, JPG, PNG, TIF, GIF
Q&AEXCEL, CSV/TXT
ManualPDF
TableEXCEL, CSV/TXT
PaperPDF
BookDOCX, PDF, TXT
LawsDOCX, PDF, TXT
PresentationPDF, PPTX
PictureJPEG, JPG, PNG, TIF, GIF
OneThe entire document is chunked as one.DOCX, EXCEL, PDF, TXT
Knowledge GraphDOCX、EXCEL、PPT、IMAGE、PDF、TXT、MD、JSON、EML
  • “General” 分块方法说明 支持的文件格式为DOCX、EXCEL、PPT、IMAGE、PDF、TXT、MD、JSON、EML、HTML。

此方法将简单的方法应用于块文件:

系统将使用视觉检测模型将连续文本分割成多个片段。接下来,这些连续的片段被合并成Token数不超过“Token数”的块。

  • “Q&A” 分块方法说明 此块方法支持 excel 和 csv/txt 文件格式。

如果文件以 excel 格式,则应由两个列组成 没有标题:一个提出问题,另一个用于答案, 答案列之前的问题列。多张纸是 只要列正确结构,就可以接受。如果文件以 csv/txt 格式为 用作分开问题和答案的定界符。未能遵循上述规则的文本行将被忽略,并且 每个问答对将被认为是一个独特的部分。

  • “Knowledge Graph” 分块方法说明 支持的文件格式为DOCX、EXCEL、PPT、IMAGE、PDF、TXT、MD、JSON、EML

文件分块后,使用分块提取整个文档的知识图谱和思维导图。此方法将简单的方法应用于分块文件:连续的文本将被切成大约 512 个 token 数的块。

接下来,将分块传输到 LLM 以提取知识图谱和思维导图的节点和关系。

图片

  • 支持embedding model

    • BAAI/bge-large-zh-v1.5
    • BAAI/bge-base-en-v1.5
    • BAAI/bge-large-en-v1.5
    • BAAI/bge-small-en-v1.5
    • BAAI/bge-small-zh-v1.5
    • jinaai/jina-embeddings-v2-base-en
    • jinaai/jina-embeddings-v2-small-en
    • nomic-ai/nomic-embed-text-v1.5
    • sentence-transformers/all-MiniLM-L6-v2
    • maidalun1020/bce-embedding-base_v1

智能问答 & AI 编排流

Agent模块—>模板选择—>HR招聘助手

图片

图片

  • 技术文档
  • Quickstart
  • User guide
  • References
  • FAQ

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2153685.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

『玉竹』基于Laravel 开发的博客、微博客系统和Android App

基于 Laravel 和 Filament 开发, 使用 Filament 开发管理后台,前端比较简洁。 博客大家都清楚是什么东西,微博客类似于微博之类的吧,有时候想要写的东西可能只有几句话,想要起个标题都不好起。 为了是微博客功能更好用&#xff0c…

Navicat导入Sql文件至Mysql数据库,事务失效

Mysql 版本:8.0.39 Navicat 版本:17.x、16.x 结论: Navicat 导入sql文件,事务不会生效,无论怎么设置 mysql.exe 导入sql文件,事务生效 测试 准备一张表 name约束不能为空,用于测试事务失败…

Qemu开发ARM篇-2、uboot交叉编译

文章目录 1、交叉编译工具安装2、uboot交叉编译3、FAQ 在继上一篇 Qemu开发ARM篇-1、环境搭建篇中,我们搭建安装了qemu虚拟机,在本节中,我们将演示如何安装交叉编译工具并交叉编译 uboot,在下一节中,我们将演示如何使用 qemu运…

如何快速找回Finalshell中VPS的SSH密码

买了vps亦或者重装了系统,就会更新SSH的连接密码,如果忘记保存或者遗忘,在邮箱里也找不到,再重装系统会非常麻烦。这时就需要在Finalshell中找回SHH的密码了。方法如下: 第一步:无认哪一种方法&#xff0c…

嵌入式入门小工程

此代码基于s3c2440 1.点灯 //led.c void init_led(void) {unsigned int t;t GPBCON;t & ~((3 << 10) | (3 << 12) | (3 << 14) | (3 << 16));t | (1 << 10) | (1 << 12) | (1 << 14) | (1 << 16);GPBCON t; }void le…

window下idea中scala的配置

目录 Scala安装步骤&#xff1a; 1.下载scala安装包 2.配置环境变量&#xff1a; 3.检查scala是否安装成功&#xff1a; 4.idea安装scala插件 5.导入scala-sdk 6.新建scala文件 Scala安装步骤&#xff1a; 1.下载scala安装包 访问Scala官网&#xff1a;https://www.sca…

MySQL高阶1907-按分类统计薪水

目录 题目 准备数据 分析数据 总结 题目 结果表 必须 包含所有三个类别。 如果某个类别中没有帐户&#xff0c;则报告 0 。 按 任意顺序 返回结果表。 查询每个工资类别的银行账户数量。 工资类别如下&#xff1a; "Low Salary"&#xff1a;所有工资 严格低于…

YOLOv8改进 | 特征融合篇,YOLOv8添加iAFF(多尺度通道注意力模块),并与C2f结构融合,提升小目标检测能力

摘要 特征融合,即来自不同层或分支的特征的组合,是现代网络架构中无处不在的一部分。虽然它通常通过简单的操作(如求和或拼接)来实现,但这种方式可能并不是最佳选择。在这项工作中,提出了一种统一且通用的方案,即注意力特征融合(Attentional Feature Fusion),适用于…

刷题训练之栈

> 作者&#xff1a;დ旧言~ > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;熟练掌握字符串算法。 > 毒鸡汤&#xff1a;学习&#xff0c;学习&#xff0c;再学习 ! 学&#xff0c;然后知不足。 > 专栏选自&#xff1a;刷题…

【C++】C++库:如何链接外部库、静态链接和动态链接,以及如何自建库并使用

十三、C库&#xff1a;如何链接外部库、静态链接和动态链接&#xff0c;以及如何自建库并使用 本篇讲C库&#xff0c;先讲如何在项目中使用外部库&#xff0c;包括静态链接和动态链接的实现&#xff1b;再讲如何在VisualStudio中自建模块或库项目&#xff0c;让所有项目都能使…

大数据实验2.Hadoop 集群搭建(单机/伪分布式/分布式)

实验二&#xff1a; Hadoop安装和使用 一、实验目的 实现hadoop的环境搭建和安装Hadoop的简单使用&#xff1b; 二、实验平台 操作系统&#xff1a;Linux&#xff08;建议Ubuntu16.04或者18.04&#xff09;&#xff1b;Hadoop版本&#xff1a;3.1.3&#xff1b;JDK版本&…

C#解决方案的各种操作

C#开发编程软件下载安装 C#开发编程软件下载安装_c#下载安装-CSDN博客文章浏览阅读208次。。。。_c#下载安装https://rxxw-control.blog.csdn.net/article/details/140879228 C#和S7-1200PLC S7.NET通信 C#和S7-1200PLC S7.NET通信_c# s1200 s7协议设置-CSDN博客文章浏览阅读…

Linux开发工具(git、gdb/cgdb)--详解

目录 一、Linux 开发工具分布式版本控制软件 git1、背景2、使用 git&#xff08;1&#xff09;预备工作——安装 git&#xff1a;&#xff08;2&#xff09;克隆远程仓库到本地&#xff08;3&#xff09;把需要提交的代码拷贝到本地仓库&#xff08;4&#xff09;提交本地仓库文…

JavaScript ---案例(统计字符出现次数)

统计字符出现次数 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-w…

在Linux中运行flask项目

准备 这里我准备了一个GitHub上某个大佬写的留言板的Flask项目&#xff0c;就用这个来给大家做示范了。 查看留言板的目录结构 查看主程序所用的库函数 只有一个第三方库 Flask 安装pip sudo apt install python3-pip -y测试 pip 安装成功 修改pip镜像源 修改pip的默认下载…

篮球运动场景物体检测系统源码分享

篮球运动场景物体检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Comp…

Three.js 3D人物漫游项目(中)

本文目录 前言最终效果展示1、人物添加阴影1.1 添加地板1.1.1 效果 1.2 模型castShadow1.2.1 效果 1.3 轨道控制器1.3.1 效果 2、创建建筑物2.1 代码2.2 效果 前言 在数字技术的浪潮中&#xff0c;三维图形渲染技术以其独特的魅力&#xff0c;正逐步渗透到我们生活的方方面面&a…

Blender软件三大渲染器Eevee、Cycles、Workbench对比解析

Blender 是一款强大的开源3D制作平台&#xff0c;提供了从建模、雕刻、动画到渲染、后期制作的一整套工具&#xff0c;广泛应用于电影、游戏、建筑、艺术等领域。 渲染101云渲染云渲6666 相比于其他平台&#xff0c;如 Autodesk Maya、3ds Max 或 Cinema 4D&#xff0c;Blende…

Gnu Radio抓取WiFi信号,流程图中模块功能

模块流程如图所示&#xff1a; GNURadio中抓取WiFi信号的流程图中各个模块的功能&#xff1a; UHD: USRP Source&#xff1a; 使用此模块配置USRP硬件进行信号采集。设置频率、增益、采样率等参数。Complex to Mag^2&#xff1a; 将复数IQ数据转换为幅度的平方。Delay&#xf…

descrTable常用方法

descrTable 为 R 包 compareGroups 的重要函数&#xff0c;有关该函数以及 compareGroups 包的详细内容见&#xff1a;R包compareGroups详细用法 加载包和数据 library(compareGroups)# 加载 REGICOR 数据&#xff08;横断面&#xff0c;从不同年份纳入&#xff0c;每个变量有…