NLP(二)-文本表示

news2024/11/14 15:12:41

One-hot

One-hot(独热)编码是一种最简单的文本表示方式。如果有一个大小为V的词表,对于第i个词$w_i$,可以用一个长度为V的向量来表示,其中第i个元素为1,其它为0.例如:

减肥:[1, 0, 0, 0, 0]
瘦身:[0, 1, 0, 0, 0]
增重:[0, 0, 1, 0, 0]
减脂:[0, 0, 0, 1, 0]
塑形:[0, 0, 0, 0, 1]

One-hot词向量构建简单,但也存在明显的弱点:

  • 维度过高。如果词数量较多,每个词需要使用更长的向量表示,造成维度灾难;

  • 稀疏矩阵。每个词向量,其中只有一位为1,其它位均为零;

  • 语义鸿沟。词语之间的相似度、相关程度无法度量。

词袋模型

词袋模型(Bag-of-words model,BOW),BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的,不依赖于其它单词是否出现。例如:

我把他揍了一顿,揍得鼻青眼肿
他把我揍了一顿,揍得鼻青眼肿

构建一个词典:

{"我":0, "把":1, "他":2, "揍":3, "了":4 "一顿":5, "鼻青眼肿":6, "得":7}

再将句子向量化,维数和字典大小一致,第i维上的数值代表ID为i的词在句子里出现的频次,两个句子可以表示为:

[1, 1, 1, 2, 1, 1, 1, 1]
[1, 1, 1, 2, 1, 1, 1, 1]

词袋模型表示简单,但也存在较为明显的缺点:

  • 丢失了顺序和语义。顺序是极其重要的语义信息,词袋模型只统计词语出现的频率,忽略了词语的顺序。例如上述两个句子意思相反,但词袋模型表示却完全一致;

  • 高维度和稀疏性。当语料增加时,词袋模型维度也会增加,需要更长的向量来表示。但大多数词语不会出现在一个文本中,所以导致矩阵稀疏。

TF-IDF

TF-IDF(Term Frequency-Inverse Document Frequency,词频-逆文档频率)是一种基于传统的统计计算方法,常用于评估一个文档集中一个词对某份文档的重要程度。其基本思想是:一个词语在文档中出现的次数越多、出现的文档越少,语义贡献度越大(对文档区分能力越强)。其表达式为:

共现矩阵

共现(co-occurrence)矩阵指通过统计一个事先指定大小的窗口内的词语共现次数,以词语周边的共现词的次数做为当前词语的向量。具体来说,我们通过从大量的语料文本中构建一个共现矩阵来表示词语。例如,有语料如下:

I like deep learning.
I like NLP.
I enjoy flying.

则共现矩阵表示为:

矩阵定义的词向量在一定程度上缓解了one-hot向量相似度为0的问题,但没有解决数据稀疏性和维度灾难的问题。

N-Gram表示

N-Gram模型是一种基于统计语言模型,语言模型是一个基于概率的判别模型,它的输入是个句子(由词构成的顺序序列),输出是这句话的概率,即这些单词的联合概率。

N-Gram本身也指一个由N个单词组成的集合,各单词具有先后顺序,且不要求单词之间互不相同。常用的有Bi-gram(N=2)和Tri-gram(N=3)。例如:

句子:I love deep learning

Bi-gram: {I, love}, {love, deep}, {deep, learning}

Tri-gram: {I, love, deep}, {love deep learning}

N-Gram基本思想是将文本里面的内容按照字节进行大小为n的滑动窗口操作,形成了长度是n的字节片段序列。每一个字节片段称为一个gram,对所有gram的出现频度进行统计,并按照事先设置好的频度阈值进行过滤,形成关键gram列表,也就是这个文本向量的特征空间,列表中的每一种gram就是一个特征向量维度。

词嵌入

1)什么是词嵌入

词嵌入(word embedding)是一种词的向量化表示方式,该方法将词语映射为一个实数向量,同时保留词语之间语义的相似性和相关性。例如:

 我们用一个四维向量来表示man,Women,King,Queen,Apple,Orange等词语(在实际中使用更高维度的表示,例如100~300维),这些向量能进行语义的表示和计算。例如,用Man的向量减去Woman的向量值:

类似地,如果用King的向量减去Queen的向量,得到相似的结果: 我们可以通过某种降维算法,将向量映射到低纬度空间中,相似的词语位置较近,不相似的词语位置较远,这样能帮助我们更直观理解词嵌入对语义的表示。如下图所示:

实际任务中,词汇量较大,表示维度较高,因此,我们不能手动为大型文本语料库开发词向量,而需要设计一种方法来使用一些机器学习算法(例如,神经网络)自动找到好的词嵌入,以便有效地执行这项繁重的任务。

2)词嵌入的优点

  • 特征稠密;

  • 能够表征词与词之间的相似度;

  • 泛化能力更好,支持语义计算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2152076.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

59.【C语言】内存函数(memmove函数)

目录 2.memove函数 *简单使用 部分翻译 *模拟实现 方案1 方案2 1.有重叠 dest在src左侧 dest在src右侧 2.无重叠 代码 2.memove函数 *简单使用 memove:memory move cplusplus的介绍 点我跳转 对比第59篇的memcpy函数 对比memmcpy函数的介绍如下区别: 部分翻译 m…

【Verilog学习日常】—牛客网刷题—Verilog快速入门—VL59

根据RTL图编写Verilog程序 描述 根据以下RTL图,使用 Verilog HDL语言编写代码,实现相同的功能,并编写testbench验证功能。 输入描述: clk:系统时钟信号 rst_n:复位信号,低电平有效 data_in…

js 获取树节点上某节点的最底层叶子节点数据

效果图 数据为某一个节点对象 递归代码 function getLeafNodes(node) {if (!node.children || node.children.length 0) {// 如果是叶子节点,返回它的数据return [node.data];}// 如果节点有子节点,递归获取所有叶子节点的数据return node.children.…

基于误差状态的卡尔曼滤波

基于误差状态的卡尔曼滤波ESKF 注意这里的观测方程,是IMU的误差状态和激光定位的差值得到的。

JavaWeb---三层架构

文章目录 1. 为什么需要分层?2.软件设计中的分层模式3.分层4.三层架构:显示层、业务逻辑层、数据访问层3. 案例:利用三层架构原理实现编写web程序的流程 摘自:https://blog.csdn.net/qq_64001795/article/details/124112824 1. 为…

Qt日志输出及QsLog日志库

目录 Qt日志输出及QsLog日志库日志输出格式化日志普通格式化条件格式化环境变量设置格式化日志输出位置日志输出对象信息禁用输出 QsLog日志库使用方法1. 将QsLog目录添加到项目中2. 配置CMakeLists.txt文件3. 配置.pro文件4. 日志记录器的配置5. 运行程序6. 启用行号和文件名C…

Why is OpenAI image generation Api returning 400 bad request in Unity?

题意:为什么 OpenAI 图像生成 API 在 Unity 中返回 400 Bad Request 错误? 问题背景: Im testing out dynamically generating images using OpenAI API in Unity. Amusingly, I actually generated most of this code from chatGPT. 我正在…

idea中.git文件夹存在但是没有git功能列表

1.问题: 该项目中已经将.git文件夹置入了,但是idea中却没有git相关的功能列表,如图: 2.解决办法: 在【文件】-【设置】-【版本控制】-【目录映射】中添加目录映射应用就好了 (【File】 -> 【S…

网络资源模板--Android Studio 图书借阅App

目录 一、项目演示 二、项目测试环境 三、项目详情 四、完整的项目源码 一、项目演示 网络资源模板--图书借阅App 二、项目测试环境 三、项目详情 首页 这段代码是一个 Android 应用的 MainActivity 类,功能简要总结如下: 1. **界面设置**&#xf…

Hutool:Java开发者的瑞士军刀

有想念,才是团圆;在一起,便是中秋。 在Java的世界里,有这样一个工具库,它小巧而强大,功能丰富且易于使用,它就是Hutool。Hutool是一个Java工具包,旨在减少Java开发人员在开发过程中…

Oracle数据库逻辑与物理结构操作

一、实验步骤 1、查询所有DBA和USER开头的静态数据字典 2、查询所有V$动态性能视图 3、查询当前数据库中的表空间信息 ①查询和TABLESPACE相关的数据字典 ②通过动态性能视图查询表空间信息 ③通过数据字典查询表空间信息 4、操作数据文件 (1)向 ORC…

JavaWeb JavaScript 11.XML —— 配置文件

生活想埋没我,没想到我是颗种子 —— 24.9.19 一、XML 1.什么是XML XML是EXtensible Markup Languge的缩写,翻译过来就是可扩展标记语言。所以很明显,XML和HTML一样都是标记语言,也就是说它们的基本语法都是标签 可扩展 三个字…

网络:UDP协议

个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》《C》《Linux》 文章目录 前言UDP协议报头和有效载荷分离的问题有效载荷向上交付的问题,也就是交给哪个进程?怎么确定把报文收全了?UDP报头是如何封装的呢&…

JavaWeb纯小白笔记02:Tomcat的使用:发布项目的三种方式、配置虚拟主机、配置用户名和密码

通过Tomcat进行发布项目的目的是为了提供项目的访问能力:Tomcat作为Web服务器,能够处理HTTP请求和响应,将项目的内容提供给用户进行访问和使用。 一.Tomcat发布项目的三种方式: 第一种:直接在Tomcat文件夹里的webapp…

数学建模 第一讲 - 概论

一、什么是数学模型 一个栗子 例 1.1 一只装满水的圆柱型桶,底半径为 1米,高为 2米,底部有一直径为 0.1 米的洞。问桶流空要多少时间? 数学模型是对于一个特定的对象为了一个特定目标,根据事物的内在规律,作出一些必…

防止用户过于轻松采集网页内容的方法

面对AI,所有禁止采集网页内容的功能都是徒劳,最不济截图后采集文字总简单了吧?能做的就是增加一点点人工采集的难度。 以下总结一下 一、注册用户 必须注册才能浏览全部内容,那么这样就可以针对用户控制其浏览次数,浏…

ActiveMQ、RabbitMQ 和 Kafka 在 Spring Boot 中的实战

在现代的微服务架构和分布式系统中,消息队列 是一种常见的异步通信工具。消息队列允许应用程序之间通过 生产者-消费者模型 进行松耦合、异步交互。在 Spring Boot 中,我们可以通过简单的配置来集成不同的消息队列系统,包括 ActiveMQ、Rabbit…

多层感知机paddle

多层感知机——paddle部分 本文部分为paddle框架以及部分理论分析,torch框架对应代码可见多层感知机 import paddle print("paddle version:",paddle.__version__)paddle version: 2.6.1多层感知机(MLP,也称为神经网络&#xff0…

QEMU:模拟 ARM 大端字节序运行环境

文章目录 1. 前言2. ARM 大小端模拟测试2.1 裸机模拟测试2.1.1 大端模拟测试2.1.2 小端模拟测试 2.2 用户空间模拟测试2.2.1 大端模拟测试2.2.2 小端模拟测试 2.3 结论 3. 参考链接 1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失&…

leetcode刷题3

文章目录 前言回文数1️⃣ 转成字符串2️⃣ 求出倒序数再比对 正则表达式匹配[hard]1️⃣ 动态规划 盛最多水的容器1️⃣ 遍历分类2️⃣ 双指针贪心 最长公共前缀1️⃣ 遍历(zip解包) 三数之和1️⃣ 双指针递归 最接近的三数之和1️⃣ 迭代一次双指针 电…