服务监控插件全览:提升微服务可观测性的利器

news2025/1/23 6:59:46

在这里插入图片描述

Datadog

1. 概述与背景

  • 简介:Datadog 是一个云监控和分析平台,它提供全面的监控解决方案,包括性能监控、故障排查、资源利用率优化等。Datadog 适用于各种规模的分布式系统,包括微服务架构、大数据平台、云原生应用等。
  • 目的:Datadog 的主要目的是提供实时监控和分析,帮助用户及时发现和解决性能瓶颈、故障预警、资源利用率优化等问题。

2. 核心功能

  • 实时监控:Datadog 能够实时收集系统各组件的性能指标,如 CPU、内存、磁盘、网络 IO、响应时间等。它通过 DogStatsD 收集自定义指标,并将这些数据聚合成数据点发送到 Datadog 服务器。
  • 自动发现与配置:Datadog 支持自动发现服务实例,并自动配置监控项,减少手动配置的工作量。例如,Apache APISIX 与 Datadog 的集成可以通过 APISIX-Datadog 插件实现,该插件自动将指标推送到 Datadog 平台。
  • 告警与通知:Datadog 允许用户根据预设的阈值触发告警,并通过多种渠道(如邮件、短信、Slack 等)通知相关人员。它提供了灵活的告警设置,确保问题能被及时发现和处理。
  • 可视化仪表盘:Datadog 提供了丰富的可视化界面,包括实时数据图表、历史趋势分析、拓扑图等,帮助用户直观理解系统状态。
  • 深度分析:Datadog 支持根因分析、慢查询分析、调用链追踪等高级功能,帮助用户快速定位问题。

3. 集成与扩展性

  • 集成能力:Datadog 与主流监控系统(如 Prometheus、Grafana、ELK Stack 等)良好集成,支持自定义数据源和插件扩展。例如,Datadog 可以通过 APISIX-Datadog 插件与 Apache APISIX 集成,提供与 Datadog 监控平台的集成。
  • API与SDK:Datadog 提供了丰富的 API 接口和 SDK,方便开发者将监控功能集成到自己的应用中,或进行二次开发。

4. 性能与资源消耗

  • 轻量级:Datadog Agent 是轻量级的,常驻内存约 50MB,CPU 时间平均小于 1%,对系统性能的影响很小。
  • 高效性:Datadog 在数据采集、处理、存储和查询等方面的性能表现优秀,支持分布式部署以提高处理能力。

5. 安全性与合规性

  • 数据加密:Datadog 在数据传输和存储过程中采用加密技术,保护敏感数据不被泄露。
  • 权限控制:Datadog 提供了详细的权限管理机制,确保只有授权用户才能访问监控数据。
  • 合规性:Datadog 满足特定的行业或地区的数据保护法规要求,如 GDPR、HIPAA 等。

6. 社区与支持

  • 社区活跃度:Datadog 拥有活跃的开源社区,贡献者数量众多,更新频率高,问题响应速度快。
  • 技术支持:Datadog 提供了全面的技术支持服务,包括官方文档、教程、论坛、付费支持等。

7. 案例与成功故事

  • 实际应用:Datadog 被许多大型企业如 Facebook、Airbnb 等使用,证明了其在实际生产环境中的效果和价值。例如,Apache APISIX 通过 APISIX-Datadog 插件与 Datadog 集成,提高了系统的可观测性 。

通过以上介绍,我们可以看到 Datadog 是一个功能全面、性能优异的监控工具,适用于各种分布式系统的监控需求。

Influx

Influx

1. 概述与背景

  • 简介:InfluxDB 是一个开源的时间序列数据库,专门设计用于处理和存储时间序列数据。它由 InfluxData 开发,适用于 DevOps 监控、应用程序指标、物联网传感器数据和实时分析等场景。
  • 目的:InfluxDB 的主要目的是提供高性能的数据存储和查询,特别是在写入和查询负载较高的情况下,如监控系统和物联网应用。

2. 核心功能

  • 实时监控:InfluxDB 能够实时收集和存储时间序列数据,支持高频率的数据写入和查询,确保数据的实时性。
  • 自动发现与配置:InfluxDB 提供了简单的 HTTP API 写入和查询接口,可以轻松配置和使用。
  • 告警与通知:虽然 InfluxDB 本身不直接提供告警功能,但它可以通过与其他系统集成(如 Grafana)来实现告警和通知。
  • 可视化仪表盘:InfluxDB 常与 Grafana 等可视化工具结合使用,提供实时数据图表和历史趋势分析。
  • 深度分析:InfluxDB 支持数据聚合和复杂查询,但其高级分析功能可能不如一些专门的分析工具。

3. 集成与扩展性

  • 集成能力:InfluxDB 可以与 Prometheus、Grafana、Kapacitor 等监控系统和可视化工具集成,支持自定义数据源和插件扩展。
  • API与SDK:InfluxDB 提供了丰富的 API 接口,方便开发者将监控功能集成到自己的应用中。

4. 性能与资源消耗

  • 轻量级:InfluxDB 针对时间序列数据进行了优化,具有高效的数据压缩机制,减少了存储资源的消耗。
  • 高效性:InfluxDB 的 TSM 存储引擎提供了高速的数据读写能力,尤其是在处理大规模时间序列数据时表现出色。

5. 安全性与合规性

  • 数据加密:InfluxDB 支持数据传输过程中的加密,保护数据安全。
  • 权限控制:InfluxDB 提供了用户权限管理机制,确保数据访问的安全性。

6. 社区与支持

  • 社区活跃度:InfluxDB 拥有活跃的开源社区,用户可以在社区中获得支持和帮助。
  • 技术支持:InfluxData 提供了官方文档、教程和论坛支持,同时也提供商业支持服务。

7. 案例与成功故事

  • 实际应用:InfluxDB 被广泛应用于各种监控和分析场景,如云服务提供商的监控平台、大型企业的 IoT 项目等,证明了其在实际生产环境中的有效性和可靠性。

InfluxDB 的高性能、易用性和强大的时间序列数据处理能力使其成为处理监控数据和 IoT 数据的理想选择。通过与其他工具的集成,InfluxDB 可以构建全面的监控解决方案。

Graphite

Graphite

1. 概述与背景

  • 简介:Graphite[https://graphiteapp.org/] 是一个开源的监控工具,主要用于收集、存储和展示时间序列数据。它由三个主要部分组成:Carbon(接收和处理数据)、Whisper(存储数据的数据库)和 Graphite-Web(展示数据的 Web 应用)。Graphite 适用于需要实时监控和历史数据分析的各种规模的分布式系统,包括微服务架构、大数据平台和云原生应用。
  • 目的:Graphite 的主要目的是提供一个简单、灵活且高效的监控解决方案,帮助用户监控和分析系统性能,及时发现性能瓶颈和故障,优化资源利用率。

2. 核心功能

  • 实时监控:Graphite 能够实时收集系统各组件的性能指标,如 CPU、内存、磁盘、网络 IO 和响应时间等。它通过 Carbon 组件接收数据,并存储在 Whisper 数据库中。
  • 自动发现与配置:Graphite 本身不提供自动发现服务实例的功能,但可以通过集成其他工具如 Consul 来实现服务发现。配置主要通过修改配置文件来完成。
  • 告警与通知:Graphite 支持告警功能,但通常需要与其他工具如 Alertmanager 集成来实现告警通知。
  • 可视化仪表盘:Graphite-Web 提供了一个基于 Django 的 Web 应用程序,用于展示实时数据图表和历史趋势分析。用户可以通过它创建和定制多种图表。
  • 深度分析:Graphite 支持通过函数和查询语言进行数据的深度分析,包括数据聚合、计算和转换等。

3. 集成与扩展性

  • 集成能力:Graphite 可以与多种数据源和存储后端集成,如 StatsD、collectd 等。它也支持与其他可视化工具如 Grafana 集成,提供更丰富的可视化选项。
  • API与SDK:Graphite 提供了 HTTP API,允许用户查询数据并生成图表。这使得开发者可以将 Graphite 集成到自己的应用中。

4. 性能与资源消耗

  • 轻量级:Graphite 设计轻量级,对系统资源的消耗较小,适合在各种环境中部署。
  • 高效性:Graphite 的 Whisper 存储引擎针对时间序列数据进行了优化,提供了高效的数据写入和查询性能。

5. 安全性与合规性

  • 数据加密:Graphite 支持通过 HTTPS 协议加密数据传输,保护数据安全。
  • 权限控制:Graphite-Web 支持基于 Django 用户模型的权限控制,确保只有授权用户才能访问监控数据。

6. 社区与支持

  • 社区活跃度:Graphite 拥有一个活跃的开源社区,用户可以在社区中获得支持和帮助。
  • 技术支持:Graphite 提供了官方文档和社区论坛支持,同时也有第三方提供的商业支持服务。

7. 案例与成功故事

  • 实际应用:Graphite 被广泛应用于各种监控场景,如系统监控、业务监控和数据分析等。许多大型企业和开源项目都在使用 Graphite 作为他们的主要监控工具。

Graphite 是一个成熟且功能丰富的监控工具,适用于需要实时监控和历史数据分析的分布式系统。通过与其他工具的集成,Graphite 可以构建全面的监控解决方案。

New Relic

New Relic

1. 概述与背景

  • 简介:New Relic 是一款强大的服务器性能监控工具,专注于 SaaS 和应用性能管理 (APM) 业务。它支持通过代理 (agent) 和 API 传送数据,能够监控部署在本地或云中的 Web 应用程序,包括故障修复、诊断、线程分析和容量计划。New Relic 适用于各种规模的分布式系统,包括微服务架构、大数据平台和云原生应用。
  • 目的:New Relic 的主要目的是提供端到端的监控能力,从前端页面性能到后台服务端的响应速度,提供详尽的监控数据,帮助团队减少问题解决时间,集中精力开发更多功能。

2. 核心功能

  • 实时监控:New Relic 提供实时监控功能,可以监控应用性能、数据库性能、浏览器和移动应用性能等。它通过代理收集性能数据,每分钟通过 HTTPS 或 HTTP 协议异步地发送给 New Relic 数据中心进行存储和处理。
  • 自动发现与配置:New Relic 支持自动发现服务实例,并且可以通过简单的安装和配置即可开始监控,大部分语言都支持。
  • 告警与通知:New Relic 允许用户根据预设的阈值触发告警,并通过邮件、短信、Slack 等多种渠道通知相关人员,确保问题能被及时发现和处理。
  • 可视化仪表盘:New Relic 提供了丰富的可视化界面,包括实时数据图表、历史趋势分析、拓扑图等,帮助用户直观理解系统状态。
  • 深度分析:New Relic 支持端对端事务跟踪、代码级的可见性、关键事务标记、X光会话等高级功能,帮助用户快速定位问题。

3. 集成与扩展性

  • 集成能力:New Relic 可以与多种数据源和存储后端集成,如 Prometheus、Grafana、ELK Stack 等。它也支持与其他 New Relic 产品如 Browser、Synthetics、Mobile、Plugins、Infrastructure 等集成,提供全面的监控解决方案。
  • API与SDK:New Relic 提供了丰富的 API 接口和 SDK,方便开发者将监控功能集成到自己的应用中,或进行二次开发。

4. 性能与资源消耗

  • 轻量级:New Relic 代理设计轻量级,对系统资源的消耗较小,适合在各种环境中部署。
  • 高效性:New Relic 在数据采集、处理、存储和查询等方面的性能表现优秀,支持分布式部署以提高处理能力。

5. 安全性与合规性

  • 数据加密:New Relic 在数据传输和存储过程中采用加密技术,保护敏感数据不被泄露。
  • 权限控制:New Relic 提供了详细的权限管理机制,确保只有授权用户才能访问监控数据。
  • 合规性:New Relic 满足特定的行业或地区的数据保护法规要求,如 GDPR、HIPAA 等。

6. 社区与支持

  • 社区活跃度:New Relic 拥有活跃的开源社区,用户可以在社区中获得支持和帮助。
  • 技术支持:New Relic 提供了官方文档、教程、论坛支持,同时也提供商业支持服务。

7. 案例与成功故事

  • 实际应用:New Relic 被广泛应用于各种监控场景,如系统监控、业务监控和数据分析等。许多大型企业和开源项目都在使用 New Relic 作为他们的主要监控工具,证明了其在实际生产环境中的有效性和可靠性。例如,New Relic 利用 Amazon EKS 改变了业务模式,管理了前所未有的发展,迁移超过 2 万个服务器并对其服务平台进行重构,见证了工程效率和平台弹性的实质性改善 。

通过以上介绍,我们可以看到 New Relic 是一个功能全面、性能优异的监控工具,适用于各种分布式系统的监控需求。通过与其他工具的集成,New Relic 可以构建全面的监控解决方案。

Prometheus

Prometheus

1. 概述与背景

  • 简介:Prometheus 是一个开源系统监控和警报工具包,最初由 SoundCloud 构建,并于 2012 年成为社区开源项目。它现在是云原生计算基金会(CNCF)的独立项目,与 Kubernetes 并列。Prometheus 以其多维数据模型和灵活的查询语言 PromQL 而闻名,适用于机器为中心的监控以及高度动态的服务导向架构监控。
  • 目的:Prometheus 的主要目的是提供强大的监控和警报功能,尤其是在微服务架构和云原生环境中。它能够收集和存储时间序列数据,帮助用户及时发现和解决性能问题、故障预警和资源利用率优化。

2. 核心功能

  • 实时监控:Prometheus 通过定期从目标端点拉取(Pull)指标数据,支持多维数据模型,允许用户通过标签对数据进行切片、过滤和聚合。
  • 自动发现与配置:Prometheus 支持通过服务发现机制自动检测监控目标,减少手动配置的工作量。它还支持静态配置,允许用户明确指定监控目标。
  • 告警与通知:Prometheus 内置告警规则,支持与 Alertmanager 集成,通过邮件、短信、Slack 等多种渠道发送告警通知。
  • 可视化仪表盘:Prometheus 通常与 Grafana 等可视化工具集成,提供丰富的数据图表和仪表板展示。
  • 深度分析:Prometheus 的 PromQL 提供了强大的数据查询能力,支持用户进行复杂的数据分析和聚合操作。

3. 集成与扩展性

  • 集成能力:Prometheus 能够与多种数据源和存储后端集成,如 Kubernetes、etcd、Consul 等。它还支持通过 Exporter 集成第三方服务。
  • API与SDK:Prometheus 提供了 HTTP API,允许用户查询数据并生成图表。它还提供了多种语言的客户端库,方便开发者集成监控功能。

4. 性能与资源消耗

  • 轻量级:Prometheus 设计轻量级,对系统资源的消耗较小,适合在各种环境中部署。
  • 高效性:Prometheus 的本地存储机制针对时间序列数据进行了优化,提供了高效的数据写入和查询性能。

5. 安全性与合规性

  • 数据加密:Prometheus 支持通过 HTTPS 协议加密数据传输,保护数据安全。
  • 权限控制:Prometheus 提供了基于角色的访问控制(RBAC),确保只有授权用户才能访问监控数据。

6. 社区与支持

  • 社区活跃度:Prometheus 拥有一个非常活跃的开源社区,提供丰富的文档资源和工具支持。
  • 技术支持:Prometheus 提供了官方文档、教程和论坛支持,同时也有第三方提供的商业支持服务。

7. 案例与成功故事

  • 实际应用:Prometheus 被广泛应用于各种监控场景,如系统监控、业务监控和数据分析等。许多大型企业和开源项目都在使用 Prometheus 作为他们的主要监控工具,证明了其在实际生产环境中的有效性和可靠性。

Prometheus 是一个功能全面、性能优异的监控工具,适用于各种分布式系统的监控需求。通过与其他工具的集成,Prometheus 可以构建全面的监控解决方案。

Distributed Tracing

Distributed Tracing

1. 概述与背景

  • 简介:Distributed Tracing,即分布式追踪,是一种用于监控和诊断分布式系统中请求路径的技术。它通过记录和分析请求在服务之间的传递路径和执行情况,帮助开发人员和运维团队理解系统的运行状况、性能和问题。分布式追踪系统通常由追踪代理(Tracing Agent)、追踪收集器(Tracing Collector)和追踪存储(Tracing Storage)三个主要组件组成,协同工作来跟踪请求。
  • 目的:分布式追踪的主要目的是提供对分布式系统中请求流程和组件交互的全局视图,帮助开发人员进行故障排查、性能优化、容量规划和资源管理。它通过可视化界面或查询语言,使得团队能够更快地了解每个微服务的性能,从而优化系统的整体性能和可靠性。

2. 核心功能

  • 实时监控:分布式追踪系统能够实时收集和记录系统中的请求和操作,提供对系统性能的实时监控。
  • 自动发现与配置:某些分布式追踪系统支持自动发现服务实例,并自动配置监控项,减少手动配置的工作量。
  • 告警与通知:分布式追踪系统可以与告警系统集成,提供实时的告警和通知功能,确保问题能被及时发现和处理。
  • 可视化仪表盘:分布式追踪系统通常提供可视化界面,如 Jaeger、Zipkin、Grafana Tempo 等,帮助用户直观理解系统状态和请求的完整路径。
  • 深度分析:分布式追踪系统支持对追踪数据进行深度分析,包括根因分析、慢查询分析、调用链追踪等,帮助用户快速定位问题。

3. 集成与扩展性

  • 集成能力:分布式追踪系统可以与多种数据源和存储后端集成,如 Prometheus、Grafana、ELK Stack 等。它还支持与其他监控系统和可视化工具集成,提供全面的监控解决方案。
  • API与SDK:分布式追踪系统通常提供丰富的 API 接口和 SDK,方便开发者将监控功能集成到自己的应用中,或进行二次开发。

4. 性能与资源消耗

  • 轻量级:分布式追踪系统设计轻量级,对系统资源的消耗较小,适合在各种环境中部署。
  • 高效性:分布式追踪系统在数据采集、处理、存储和查询等方面的性能表现优秀,支持分布式部署以提高处理能力。

5. 安全性与合规性

  • 数据加密:分布式追踪系统在数据传输和存储过程中采用加密技术,保护数据安全。
  • 权限控制:分布式追踪系统提供详细的权限管理机制,确保只有授权用户才能访问监控数据。

6. 社区与支持

  • 社区活跃度:分布式追踪系统拥有活跃的开源社区,提供丰富的文档资源和工具支持。
  • 技术支持:分布式追踪系统提供了官方文档、教程和论坛支持,同时也有第三方提供的商业支持服务。

7. 案例与成功故事

  • 实际应用:分布式追踪系统被广泛应用于各种监控场景,如系统监控、业务监控和数据分析等。许多大型企业和开源项目都在使用分布式追踪系统作为他们的主要监控工具,证明了其在实际生产环境中的有效性和可靠性。

通过以上介绍,我们可以看到分布式追踪是分布式系统可观测性的核心工具之一,它通过提供实时监控、告警通知、可视化分析和深度分析等功能,帮助团队提高系统的可观测性和可维护性。

Wavefront

Wavefront

1. 概述与背景

  • 简介:Wavefront 是 VMware 旗下的一款云端监控和分析平台,以 SaaS 形式提供服务。它专门设计用于监控云服务和分布式应用,能够收集详尽的性能数据和日志,帮助用户分析应用性能瓶颈和快速排除故障。Wavefront 适用于各种规模的应用,包括微服务架构和云原生应用。
  • 目的:Wavefront 的主要目的是提供端到端的监控解决方案,帮助用户实时监控和分析应用性能,优化资源利用率,并通过数据可视化快速定位和解决问题。

2. 核心功能

  • 实时监控:Wavefront 支持高速数据采样,能够应对云服务和容器的快速变化,支持每秒百万次以上的数据采样。
  • 自动发现与配置:Wavefront 提供了 Wavefront Agent 和多种集成方式,可以自动从云服务和应用中收集数据。
  • 告警与通知:用户可以通过 Wavefront Query Language 创建告警规则,当数据超出预设阈值时,系统会通过邮件、短信等方式通知相关人员。
  • 可视化仪表盘:Wavefront 提供了丰富的图表和仪表盘,支持自定义数据展示,帮助用户直观理解系统状态。
  • 深度分析:Wavefront 支持分布式追踪技术,可以收集和分析微服务之间的调用关系和详细运行参数,帮助用户发现问题和性能瓶颈。

3. 集成与扩展性

  • 集成能力:Wavefront 支持与多种云服务和应用平台集成,如 AWS、Google Cloud、Pivotal Cloud Foundry 等,并且支持的平台数量在不断增长。
  • API与SDK:Wavefront 提供了 API 接口和 SDK,方便开发者将监控功能集成到自己的应用中,或进行二次开发。

4. 性能与资源消耗

  • 轻量级:Wavefront 设计轻量级,对系统资源的消耗较小,适合在各种环境中部署。
  • 高效性:Wavefront 能够处理大规模的数据采集和分析,支持高数据吞吐量和低延迟的查询性能。

5. 安全性与合规性

  • 数据加密:Wavefront 支持数据传输过程中的加密,保护数据安全。
  • 权限控制:Wavefront 提供了基于角色的访问控制,确保只有授权用户才能访问监控数据。

6. 社区与支持

  • 社区活跃度:Wavefront 拥有活跃的社区和丰富的文档资源,用户可以在社区中获得支持和帮助。
  • 技术支持:Wavefront 提供了官方文档、教程和论坛支持,同时也提供商业支持服务。

7. 案例与成功故事

  • 实际应用:Wavefront 被广泛应用于各种监控场景,如系统监控、业务监控和数据分析等。云存储服务商 Box 利用 Wavefront 进行系统监控和数据分析,快速定位问题并优化性能,证明了 Wavefront 在实际生产环境中的有效性和可靠性 。

通过以上介绍,我们可以看到 Wavefront 是一个功能全面、性能优异的监控工具,适用于各种分布式系统的监控需求。通过与其他工具的集成,Wavefront 可以构建全面的监控解决方案。

Zipkin

Zipkin

1. 概述与背景

  • 简介:Zipkin 是一个开源的分布式追踪系统,由 Twitter 开发并维护。它帮助开发者收集服务之间的跟踪数据,以便分析和确定延迟发生的原因。Zipkin 支持多种编程语言和服务框架,能够可视化地展示服务调用链路,是微服务架构中不可或缺的监控组件之一。
  • 目的:Zipkin 的主要目的是提供对分布式系统中请求流程和组件交互的全局视图,帮助开发人员进行故障排查、性能优化、容量规划和资源管理。

2. 核心功能

  • 实时监控:Zipkin 通过客户端库(如 Brave)收集服务之间的跟踪数据,并实时发送到 Zipkin 服务器进行存储和分析。
  • 自动发现与配置:Zipkin 客户端库可以自动与 Zipkin 服务器集成,开发者可以通过简单的配置即可开始监控。
  • 告警与通知:Zipkin 本身不直接提供告警功能,但可以通过集成其他工具(如 Prometheus Alertmanager)来实现告警通知。
  • 可视化仪表盘:Zipkin 提供了直观的 Web UI,通过图表展示服务调用链路,帮助用户理解系统状态和性能瓶颈。
  • 深度分析:Zipkin 允许用户进行深度分析,包括查看每个服务节点的耗时、请求路径和异常信息。

3. 集成与扩展性

  • 集成能力:Zipkin 可以与 Spring Cloud Sleuth、Brave 等客户端库集成,轻松接入 Java、Spring Cloud、Node.js 等环境中。
  • API与SDK:Zipkin 提供了 RESTful API,允许用户查询追踪数据,并且可以通过客户端库轻松集成到应用中。

4. 性能与资源消耗

  • 轻量级:Zipkin 客户端库设计轻量级,对系统资源的消耗较小,适合在各种环境中部署。
  • 高效性:Zipkin 服务器能够高效地处理大量追踪数据,支持分布式部署以提高处理能力。

5. 安全性与合规性

  • 数据加密:Zipkin 支持通过 HTTPS 协议加密数据传输,保护数据安全。
  • 权限控制:Zipkin 提供了基于角色的访问控制,确保只有授权用户才能访问监控数据。

6. 社区与支持

  • 社区活跃度:Zipkin 拥有活跃的开源社区,提供丰富的文档资源和工具支持。
  • 技术支持:Zipkin 提供了官方文档、教程和论坛支持,同时也有第三方提供的商业支持服务。

7. 案例与成功故事

  • 实际应用:Zipkin 被广泛应用于各种监控场景,如系统监控、业务监控和数据分析等。许多大型企业和开源项目都在使用 Zipkin 作为他们的主要监控工具,证明了其在实际生产环境中的有效性和可靠性。

通过以上介绍,我们可以看到 Zipkin 是一个功能全面、性能优异的监控工具,适用于各种分布式系统的监控需求。通过与其他工具的集成,Zipkin 可以构建全面的监控解决方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2148431.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSS的三种基本选择器

使用CSS控制网页格式有行内法&#xff0c;内嵌式&#xff0c;链接式&#xff0c;导入式等方法 这里将采用内嵌式的方法书写 内嵌法就是通过<style>标记将样式定义在HTML的文件头部中 1.标记选择器 标记选择器特点&#xff1a;定义了标记选择器之后&#xff0c;网页中…

Leetcode 93-复原 IP 地址

有效 IP 地址 正好由四个整数&#xff08;每个整数位于 0 到 255 之间组成&#xff0c;且不能含有前导 0&#xff09;&#xff0c;整数之间用 ‘.’ 分隔。 例如&#xff1a;“0.1.2.201” 和 “192.168.1.1” 是 有效 IP 地址&#xff0c;但是 “0.011.255.245”、“192.168.…

一问详解Unity下RTMP推送|轻量级RTSP服务|RTSP|RTMP播放模块说明

技术背景 好多开发者&#xff0c;对Unity下的模块&#xff0c;不甚了解&#xff0c;实际上&#xff0c;除了Windows/Linux/Android/iOS Native SDK&#xff0c;大牛直播SDK发布了Unity环境下的RTMP推流|轻量级RTSP服务&#xff08;Windows平台Linux平台Android平台&#xff09…

行人持刀检测数据集 voc yolo

行人持刀检测数据集 9000张 持刀检测 带标注 voc yolo 行人持刀检测数据集 数据集描述 该数据集旨在用于行人持刀行为的检测任务&#xff0c;涵盖了多种场景下的行人图像&#xff0c;特别是那些携带刀具的行人。数据集包含大量的图像及其对应的标注信息&#xff0c;可用于训练…

【ShuQiHere】 探索数据挖掘的世界:从概念到应用

&#x1f310; 【ShuQiHere】 数据挖掘&#xff08;Data Mining, DM&#xff09; 是一种从大型数据集中提取有用信息的技术&#xff0c;无论是在商业分析、金融预测&#xff0c;还是医学研究中&#xff0c;数据挖掘都扮演着至关重要的角色。本文将带您深入了解数据挖掘的核心概…

记录一题----计算机网络传输层

线路&#xff1a;TCP报文下放到物理层传输。 TCP报文段中&#xff0c;“序号”长度为32bit&#xff0c;为了让序列号不会循环&#xff0c;则最多能传输2^32B的数据&#xff0c;则最多能传输&#xff1a;2^32/1500B个报文 结果&#xff1a; 吞吐率一个周期内传输的数据/周期时间…

使用Webpack创建vue脚手架并搭建路由---详解

1.使用 vue 库 vue 是一个非常好用的 javascript 库&#xff0c;现在已经发行了 vue 3&#xff0c;我们可以直接导入使用库文件&#xff0c;也可以使用单文件&#xff08;SFC&#xff09;的形式&#xff0c;直接使用库文件会简单一点&#xff0c;我们先来试一下吧。 1.1安装 v…

探索AutoIt:自动化任务的Python魔法棒!

文章目录 探索AutoIt&#xff1a;自动化任务的Python魔法棒&#xff01;背景&#xff1a;为什么选择AutoIt&#xff1f;AutoIt库简介安装AutoIt库简单的库函数使用方法场景应用常见Bug及解决方案总结 探索AutoIt&#xff1a;自动化任务的Python魔法棒&#xff01; 背景&#x…

小阿轩yx-SaltStack部署与应用基础

小阿轩yx-SaltStack部署与应用基础 前言 当今数字化时代&#xff0c;大规模 IT 系统的管理已经成为一个复杂而繁琐的任务。为了提高系统管理的效率和准确性&#xff0c;自动化工具成为各企业不可或缺的一部分。Saltstack 作为一款强大的自动化和配置管理工具&#xff0c;在业…

文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计

一、介绍 使用Python作为开发语言&#xff0c;基于文本数据集&#xff08;一个积极的xls文本格式和一个消极的xls文本格式文件&#xff09;&#xff0c;使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于D…

rsync 全网备份

目录 1.前言 2.背景 3.备份的内容 4.备份方式 5.环境准备 6.步骤 7.rsync服务端调试 7.1配置 7.2创建目录并测试 8.客户端备份脚本 9.服务端脚本配置 10.增加校验功能 11.致谢 1.前言 在当今数字化的时代&#xff0c;数据的价值不言而喻。无论是企业的关键…

Linux中使用Docker构建Nginx容器完整教程

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f427;Linux基础知识(初学)&#xff1a;点击&#xff01; &#x1f427;Linux高级管理防护和群集专栏&#xff1a;点击&#xff01; &#x1f510;Linux中firewalld防火墙&#xff1a;点击&#xff01; ⏰️创作…

责任链模式实现规则校验

1、项目中责任链模式实战 我们使用责任链模式实现对订单中参数的校验&#xff0c;首先校验订单id是否为空&#xff0c;然后校验下单人是否为空&#xff0c;最后检验收获地址是否为空。业务的流程图如下所示&#xff1a; 针对上述的业务&#xff0c;我们使用责任链的模式来实现…

后端接收数组,集合类数据

文章目录 一. 请求行Path参数&#xff08;不建议&#xff09;二.数组接收&#xff08;不建议&#xff09;三.List集合接收&#xff08;建议&#xff09;四. GET请求既包含请求体又包含请求行 一. 请求行Path参数&#xff08;不建议&#xff09; DeleteMapping("/{ids}&quo…

面试干货|自动化测试中常见面试题

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 “ 今天我给大家介绍一些python自动化测试中常见的面试题&#xff0c;涵盖了Python基础、测试框架、测试工具、测试方法等方面的内容&#xff0c;希望能够帮助…

PyO3:一个Rust与Python无缝交互的工具,用Rust打造高性能Python应用

PyO3 是一个强大的工具&#xff0c;它为 Rust 开发者提供了一种与 Python 世界无缝交互的方式。无论你想用 Rust 编写 Python 模块&#xff0c;还是将 Python 集成到 Rust 程序中&#xff0c;PyO3 都能满足你的需求。 PyO3 的优势&#xff1a; 高效便捷&#xff1a; PyO3 允许你…

光伏发电量估算有多重要?如何分析?

光伏发电量的准确估算不仅是项目规划、投资决策的关键依据&#xff0c;也是后续运维管理、效益评估的基础。 一、光伏发电量估算的重要性 1、项目规划与投资决策&#xff1a;准确的发电量预测能够帮助投资者评估项目的经济可行性&#xff0c;包括投资回报率、成本回收期等关键…

基于YOLOv8+LSTM的商超扶梯场景下行人安全行为姿态检测识别

基于YOLOv8LSTM的商超扶梯场景下行人安全行为姿态检测识别 手扶电梯 行为识别 可检测有人正常行走&#xff0c;有人 跌倒&#xff0c;有人逆行三种行为 跌倒检测 电梯跌倒 扶梯跌倒 人体行为检测 YOLOv8LSTM。 基于YOLOv8LSTM的商超扶梯场景下行人安全行为姿态检测识别&#xf…

uni-app安装插件

1.通过插件市场安装https://ext.dcloud.net.cn 打开HBuilderX编辑器。 点击菜单栏中的“工具”->“插件安装”。 这里会看到已安装插件和安装新插件两个选项卡&#xff0c;点击安装新插件&#xff0c; 能看到一些核心插件&#xff0c;如果所需要的插件在核心插件里面有&…

服务器数据恢复—raid5阵列热备盘上线失败导致阵列崩溃的数据恢复案例

服务器磁盘阵列数据恢复环境&#xff1a; 服务器中有两组分别由4块SAS硬盘组建的raid5磁盘阵列&#xff0c;两组raid5阵列划分LUN&#xff0c;组成LVM结构&#xff0c;格式化为EXT3文件系统。 服务器磁盘阵列故障&#xff1a; 服务器中一组raid5阵列中有一块硬盘离线&#xff…