文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计

news2025/1/23 9:12:21

一、介绍

使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。


本项目通过开发一个基于Python语言的文本情感分析系统,能够自动识别文本中的情感倾向,并区分积极情感和消极情感。文本情感分析是自然语言处理中的一个重要应用领域,广泛应用于舆情监控、用户反馈分析和市场调研等场景。随着互联网的普及,海量的用户生成内容使得自动化的情感分析工具变得愈发重要和紧迫。

本项目的核心技术基于Word2Vec词向量模型对文本进行特征提取。Word2Vec通过将词汇映射到向量空间中,使得语义相似的词在空间中更加接近,从而更好地捕捉文本中的情感信息。文本特征提取完成后,我们使用支持向量机(SVM)算法对提取的特征进行训练,并构建了情感分类模型。SVM作为一种经典的监督学习算法,具备良好的分类性能,尤其在处理高维数据时表现优异。

为了便于用户操作和管理,本项目还基于Django框架开发了一个可视化的网页平台。该平台不仅能够提供用户友好的界面,使用户能够方便地上传文本并查看情感分析结果,还具备数据存储和管理功能,支持对分析结果的历史记录进行保存和检索。通过这一平台,用户可以直观地了解文本情感分析的过程和结果,提升了用户体验与系统的实用性。

二、效果图片展示

img_07_06_11_01_03

img_07_06_11_01_18

img_07_06_11_01_29

img_07_06_11_01_56

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/yn2icplnbkwafd10

四、SVM算法介绍

支持向量机(Support Vector Machine, SVM)是一种用于分类和回归分析的监督学习算法,广泛应用于文本分类、图像识别等领域。其基本思想是通过在特征空间中寻找一个最佳的超平面,将不同类别的数据进行划分。SVM尤其擅长处理高维数据,并在小样本、非线性问题中表现出色。

SVM 的核心是最大化分类间隔(Margin),即找到使得两类数据点之间距离最大的决策边界。通过这种方式,SVM 能有效地提高模型的泛化能力,减少过拟合的风险。对于线性不可分的数据,SVM 通过引入核函数(Kernel)将数据映射到更高维的空间,使其在新空间中线性可分。常用的核函数包括线性核、径向基核(RBF)和多项式核等。

在情感分析任务中,SVM可以通过处理文本的高维特征向量来实现分类。借助于Word2Vec等特征提取方法,SVM能利用文本的语义信息,将文本映射到向量空间后进行情感分类。其优异的分类性能和对高维数据的处理能力使得SVM在文本情感分类领域得到了广泛应用。

以下是一个使用支持向量机(SVM)进行文本情感分类的简单示例代码,假设我们已经对文本数据进行了特征提取(例如通过Word2Vec或TF-IDF),并将数据转化为数值特征矩阵进行训练和测试:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score

# 假设我们有一个文本数据集和对应的标签(积极/消极)
data = pd.read_csv('text_sentiment_data.csv')  # 数据集,包含两列:'text' 和 'label'

# 使用TF-IDF对文本进行特征提取
vectorizer = TfidfVectorizer(max_features=5000)  # 选择5000个最重要的特征
X = vectorizer.fit_transform(data['text'])  # 将文本转化为特征矩阵
y = data['label']  # 标签(积极或消极)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化SVM分类器
svm_model = SVC(kernel='linear')  # 使用线性核

# 训练模型
svm_model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = svm_model.predict(X_test)

# 输出分类结果
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:")
print(classification_report(y_test, y_pred))

代码说明:

  1. 数据加载:假设我们有一个包含文本和情感标签的数据集。
  2. 特征提取:使用TfidfVectorizer对文本进行特征提取,将文本转化为数值特征矩阵。也可以使用其他方法如Word2Vec。
  3. 模型训练:使用SVC来构建支持向量机模型,并选择线性核函数。
  4. 预测与评估:在测试集上进行预测,并输出模型的准确率和分类报告。

这是一个简化的示例,在实际应用中可以根据需求调整特征提取方式和模型参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2148420.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

rsync 全网备份

目录 1.前言 2.背景 3.备份的内容 4.备份方式 5.环境准备 6.步骤 7.rsync服务端调试 7.1配置 7.2创建目录并测试 8.客户端备份脚本 9.服务端脚本配置 10.增加校验功能 11.致谢 1.前言 在当今数字化的时代,数据的价值不言而喻。无论是企业的关键…

Linux中使用Docker构建Nginx容器完整教程

🏡作者主页:点击! 🐧Linux基础知识(初学):点击! 🐧Linux高级管理防护和群集专栏:点击! 🔐Linux中firewalld防火墙:点击! ⏰️创作…

责任链模式实现规则校验

1、项目中责任链模式实战 我们使用责任链模式实现对订单中参数的校验,首先校验订单id是否为空,然后校验下单人是否为空,最后检验收获地址是否为空。业务的流程图如下所示: 针对上述的业务,我们使用责任链的模式来实现…

后端接收数组,集合类数据

文章目录 一. 请求行Path参数(不建议)二.数组接收(不建议)三.List集合接收(建议)四. GET请求既包含请求体又包含请求行 一. 请求行Path参数(不建议) DeleteMapping("/{ids}&quo…

面试干货|自动化测试中常见面试题

🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 “ 今天我给大家介绍一些python自动化测试中常见的面试题,涵盖了Python基础、测试框架、测试工具、测试方法等方面的内容,希望能够帮助…

PyO3:一个Rust与Python无缝交互的工具,用Rust打造高性能Python应用

PyO3 是一个强大的工具,它为 Rust 开发者提供了一种与 Python 世界无缝交互的方式。无论你想用 Rust 编写 Python 模块,还是将 Python 集成到 Rust 程序中,PyO3 都能满足你的需求。 PyO3 的优势: 高效便捷: PyO3 允许你…

光伏发电量估算有多重要?如何分析?

光伏发电量的准确估算不仅是项目规划、投资决策的关键依据,也是后续运维管理、效益评估的基础。 一、光伏发电量估算的重要性 1、项目规划与投资决策:准确的发电量预测能够帮助投资者评估项目的经济可行性,包括投资回报率、成本回收期等关键…

基于YOLOv8+LSTM的商超扶梯场景下行人安全行为姿态检测识别

基于YOLOv8LSTM的商超扶梯场景下行人安全行为姿态检测识别 手扶电梯 行为识别 可检测有人正常行走,有人 跌倒,有人逆行三种行为 跌倒检测 电梯跌倒 扶梯跌倒 人体行为检测 YOLOv8LSTM。 基于YOLOv8LSTM的商超扶梯场景下行人安全行为姿态检测识别&#xf…

uni-app安装插件

1.通过插件市场安装https://ext.dcloud.net.cn 打开HBuilderX编辑器。 点击菜单栏中的“工具”->“插件安装”。 这里会看到已安装插件和安装新插件两个选项卡,点击安装新插件, 能看到一些核心插件,如果所需要的插件在核心插件里面有&…

服务器数据恢复—raid5阵列热备盘上线失败导致阵列崩溃的数据恢复案例

服务器磁盘阵列数据恢复环境: 服务器中有两组分别由4块SAS硬盘组建的raid5磁盘阵列,两组raid5阵列划分LUN,组成LVM结构,格式化为EXT3文件系统。 服务器磁盘阵列故障: 服务器中一组raid5阵列中有一块硬盘离线&#xff…

【学习笔记】SSL/TLS证书安全机制之证书透明

1、概念 CT - Certificate Transparency,证书透明 2、Trying to Solve 如果意外的 CA 为我们的域名颁发证书,我们是不可见,这就是证书透明(CT)要解决的问题 3、How CT Works 任何CA机构颁发的所有证书的公共登记处&…

【Git使用】删除Github仓库中的指定文件/文件夹

前言: 上篇文章带大家上传了第一个项目至github,那要是想删除仓库中的指定文件夹怎么办?在Github中 仓库是无法通过鼠标操作直接删除文件和文件夹的,那只能通过 git 命令来执行删除操作。接下来就带大家进行操作。 详细步骤: 一…

语音识别与语音控制的原理介绍

硬件平台 机器硬件:OriginBot(导航版/视觉版)PC主机:Windows(>10)/Ubuntu(>20.04)扩展硬件:X3语音版 运行案例 首先进入OriginBot主控系统,运行一下指令。请注意,部分操作OriginBot内暂…

论文阅读与分析:Few-Shot Graph Learning for Molecular Property Prediction

论文阅读与分析:Few-Shot Graph Learning for Molecular Property Prediction 论文地址和代码地址1 摘要2 主要贡献3 基础知识Meta Learning1 介绍2 学习算法Step 1: What is learnable in a learning algorithm?Step 2:Define loss function for learn…

【线性回归模型】

线性回归模型 创建一些带标签的数据集𝐷 {(𝒙1, 𝑦1) , (𝒙2, 𝑦2 ), … , (𝒙𝑚, 𝑦𝑚) } x为特征,映射到对应的标签y,再引入偏置b 线性回归模…

POI操作EXCEL增加下拉框

文章目录 POI操作EXCEL增加下拉框 POI操作EXCEL增加下拉框 有时候通过excel将数据批量导入到系统,而业务操作人员对于一些列不想手动输入,而是采用下拉框的方式来进行选择 采用隐藏sheet页的方式来进行操作 String sheetName "supplier_hidden_s…

如何不终止容器退出Docker Bash会话

如何不终止容器退出Docker Bash会话 💖The Begin💖点点关注,收藏不迷路💖 当通过docker exec进入Docker容器的bash会话后,如果想退出但不停止容器,可以使用快捷键组合: 按下Ctrl+P然后紧接着按下Ctrl+Q。 这个操作会让你从bash会话中“分离”出来,但容器会继续运行…

【重学 MySQL】三十六、MySQL 其他函数

【重学 MySQL】三十六、MySQL 其他函数 FORMAT(value,n)CONV(value,from,to)INET_ATON(ipvalue)INET_NTOA(value)BENCHMARK(n,expr)CONVERT(value USING char_code) MySQL中有些函数无法对其进行具体的分类,但是这些函数在MySQL的开发和运维过程中也是不容忽视的。 …

磁盘存储简介

硬盘 磁盘的内部结构及原理分区表磁盘阵列 磁盘的内部结构及原理 磁盘的内部结构及原理 https://blog.csdn.net/xiaofeng_yang/article/details/138598159详细了解硬盘的工作原理 https://www.bilibili.com/video/BV1iT411o7sW?vd_source17ec636d673142d7ce4f4250839f49fe 盘…

1.3 等价类划分法

欢迎大家订阅【软件测试】 专栏,开启你的软件测试学习之旅! 文章目录 前言1 单功能2 等价划分法3 测试步骤3.1 分析需求3.2 设计测试点3.3 将测试点转为可执行用例文档3.4 执行测试3.5 缺陷管理 前言 在现代软件开发中,确保核心功能的有效性…