助力数字农林业发展服务香榧智慧种植,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建香榧种植场景下香榧果实检测识别系统

news2024/9/20 14:42:14

作为一个生在北方但在南方居住多年的人,居然头一次听过香榧(fei)这种作物,而且这个字还不会念,查了以后才知道读音(fei),三声,这着实引起了我的好奇心,我相信不认识这种作物的肯定不是只有我一个人吧。趁着假期的出去游玩的时间间隙专门去拍摄采集了相应的图片,想要结合自己做的事情来搞点有意思的事情,也是希望在不久的未来,AI真正落地数字农业赛道,为农业的发展带来新的活力,下面是我查的香榧的介绍:

香榧(学名:Torreya grandis 'Merrillii')是一种红豆杉科榧属多年生常绿乔木,也是中国特有树种和世界上稀有的经济树种。以下是对香榧的详细介绍:

形态特征:
香榧树的高度可达20至25米,直径约为1米。
树皮淡黄灰色或深灰色,有不规则的裂纹。
一年生枝条为绿色,二至三年生小枝为黄绿、淡褐黄或暗绿黄色。
树叶线形,上面光绿色,下面淡绿色。
种子为椭圆形、卵圆形、倒卵形或长椭圆形,成熟时假种皮淡紫褐色,有白粉,顶端有小凸尖头。
生长环境:
香榧主要生长在中国南方较为湿润的地区,如浙江、江苏南部、福建、江西、安徽、湖南、贵州等地,海拔1400米以下。
喜温暖湿润的气候和深厚肥沃的酸性土壤,不耐积水、干旱积薄,较耐寒。
最适宜的年平均温度为14-18℃,历年≥10℃平均活动积温7000℃以上,年极端最低温度在≥-15℃,最高气温≤43.0℃,无霜期日数≥210天,年均降水量≥1200毫米。
繁殖方式:
香榧的繁殖一般采用本地的粗榧为砧木,用优良的品种进行嫁接,4到6年开花结果。
也可以用嫁接苗造林的方式进行繁殖。
经济价值:
香榧种子含精油,有20多种芳香成分,是高级芳香油和浸膏的天然优质原料。
香榧果营养丰富,风味香醇,具有保健作用,是上等干果,具有很高的经济价值。
精油可用于日用化工工业如牙膏、香皂。
药用种仁、枝叶也可驱虫、消积、润燥等。
香榧树木质轻柔、致密,纹理直,是建筑、造船和工艺雕刻的良材。
口感和食用价值:
香榧的果实壳薄仁满,金黄黄的,入口香脆,比普通的坚果好吃,满足挑剔的味蕾。
香榧中含有较为丰富的维生素E,因此具有润泽肌肤、延缓衰老的功效。
香榧含有一种脂肪油,能够让脂溶性维生素更好地吸收,从而增加食欲。
香榧有润肠通便的作用,能促进胃肠道蠕动,缓解便秘等症状。
总的来说,香榧是一种珍贵的树种,不仅具有观赏价值,还有很高的经济价值和食用价值。同时,它也是一种具有保健作用的食品,深受人们喜爱。

农林业不是我的专长,这里本文的主要目的是想要基于目标检测模型来开发构建一套香榧果实的自动检测识别系统,在前文中我们已经基于经典的YOLOv3、YOLOv5、YOLOv7、YOLOv8、YOLOv9和最新的YOLOv10做了相关的开发实践了,感兴趣的话可以自行移步阅读即可:

《助力数字农林业发展服务香榧智慧种植,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建香榧种植场景下香榧果实检测识别系统》

《助力数字农林业发展服务香榧智慧种植,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建香榧种植场景下香榧果实检测识别系统》

《助力数字农林业发展服务香榧智慧种植,基于YOLOv7【tiny/l/x】参数系列模型开发构建香榧种植场景下香榧果实检测识别系统》

《助力数字农林业发展服务香榧智慧种植,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建香榧种植场景下香榧果实检测识别系统》

《助力数字农林业发展服务香榧智慧种植,基于YOLOv9全系列【gelan/gelan-c/gelan-e/yolov9/yolov9-c/yolov9-e】模型开发构建香榧种植场景下香榧果实检测识别系统》

《助力数字农林业发展服务香榧智慧种植,基于YOLO家族最新端到端实时算法YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建香榧种植场景下香榧果实检测识别系统》

传统的YOLOs系列的模型虽然提供了不同参数量级系列的模型,方便部署应用到不同的硬件平台上面去,但是实际在弱算力设备下还是捉襟见肘的,比如:对于树莓派来讲,那YOLOv5系列最为轻量级的n系列的模型也是非常吃力,但是那YOLOv5-lite系列的模型就可以比较轻松地跑起来,这印证了模型轻量化设计的必要性,本文采用的是正是经过轻量化设计了leYOLO模型,首先看下实例效果。

深度神经网络中的计算效率对于目标检测至关重要,尤其是在新模型将速度优先于高效计算(FLOP)的情况下。这种演变在某种程度上已经落后于嵌入式和面向移动的AI对象检测应用程序。这里重点讨论了基于FLOP的高效目标检测计算的神经网络结构的设计选择,并提出了几种优化方法来提高基于YLO的模型的效率。
首先,介绍了一种基于反向瓶颈和信息瓶颈原理的有效主干扩展方法。其次,提出了快速金字塔结构网络(FPAN),旨在促进快速多尺度特征共享,同时减少计算资源。最后提出了一个解耦的网络中网络(DNiN)检测头的设计,以提供快速而轻量级的计算分类和回归任务。
在这些优化的基础上,利用更高效的主干,为对象检测和以YOLO为中心的模型(称为LeYOLO)提供了一种新的缩放范例。在各种资源限制下始终优于现有模型,实现了前所未有的准确性和失败率。值得注意的是,LeYOLO Small在COCO val上仅以4.5次失败(G)获得了38.2%的竞争性mAP分数,与最新最先进的YOLOv9微小模型相比,计算量减少了42%,同时实现了类似的精度。我们的新型模型系列实现了以前未达到的浮点精度比,提供了从超低神经网络配置(<1 GFLOP)到高效但要求苛刻的目标检测设置(>4 GFLOP)的可扩展性,对于0.66、1.47、2.53、4.51、5.8和8.4浮点(G),具有25.2、31.3、35.2、38.2、39.3和41 mAP。

ModelsmAPImage SizeFLOP (G)
LeYOLONano25.23200.66
LeYOLONano31.34801.47
LeYOLOSmall35.24802.53
LeYOLOSmall38.26404.51
LeYOLOMedium39.36405.80
LeYOLOLarge41.07688.40

一共提供了n、s、m和l四款不同参数量级的模型。

这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】

在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

整体对比分析来看:不难发现四款不同参数量级的模型最终达到了较为相似的结果,这里综合参数量考虑我们最终选定了n系列的模型来作为线上的推理计算模型。

接下来看下n系列模型的详细情况。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

AI助力数字化农林业发展会是未来的大趋势,也希望未来会有更多真正落地应用的科技赋能农林业发展!

感兴趣的话也可以试试!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2145657.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++入门基础知识75(高级)——【关于C++ Web 编程】

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于C Web 编程的相关内容&#xff01; 关于…

HomeAssistant显示节假日

先看效果 步骤&#xff1a; 新建卡片时选择“Markdown 卡片”代码在文章最下方&#xff0c;当然你也可以自己修改 点击保存/完成 ### {% if now().hour > 6 and now().hour < 9 -%} 早上好&#xff0c; {%- elif now().hour > 9 and now().hour < 12 -%} 上午好…

【SSM-Day2】第一个SpringBoot项目

运行本篇中的代码&#xff1a;idea专业版或者idea社区版本&#xff08;2021.1~2022.1.4&#xff09;->这个版本主要是匹配插件spring boot Helper的免费版(衰) 【SSM-Day2】第一个SpringBoot项目 框架->Spring家族框架快速上手Spring BootSpring Boot的作用通过idea创建S…

【iOS】引用计数

引用计数 自动引用计数引用计数内存管理的思考方式自己生成的对象&#xff0c;自己所持有非自己生成的对象&#xff0c;自己也能持有不再需要自己持有的对象时释放无法释放非自己持有的对象 自动引用计数 自动引用计数(ARC,Automatic Reference Counting)是指内存管理中对引用…

最新多模板测算系统源码 测算系统海外多语言版

最新多模板测算系统源码 测算系统海外多语言版 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/89763600 更多资源下载&#xff1a;关注我。

10年408考研真题-数据结构

23.[2010统考真题]若元素 a,b,c,d,e,f 依次进栈&#xff0c;允许进栈、退栈操作交替进行&#xff0c;但不允许连续3次进行退栈操作&#xff0c;不可能得到的出栈序列是(D)。 A.dcebfa B.cbdaef C.bcaefd D.afedcb 解析&#xff1a;直接看D选项&#xff0c…

基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 支持向量机&#xff08;SVM&#xff09; 4.2 WOA 4.3 WOA优化SVM参数 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2022a 3.部分核…

探索开放资源上指令微调语言模型的现状

人工智能咨询培训老师叶梓 转载标明出处 开放模型在经过适当的指令调整后&#xff0c;性能可以与最先进的专有模型相媲美。但目前缺乏全面的评估&#xff0c;使得跨模型比较变得困难。来自Allen Institute for AI和华盛顿大学的研究人员们进行了一项全面的研究&#xff0c;探索…

eNSP简单用法

建立一个简单的拓扑图 点击绿色三角开启设备 双击设备可以进行命令编辑 视图 分为三个视图&#xff1a;用户视图、系统视图、接口视图 用户视图 在默认模式下就是&#xff0c;为<huawei> 按ctrlz返回用户视图 系统视图&#xff1a; 在用户视图下输入sys切换&#…

【数据可视化】Arcgis api4.x 热力图、时间动态热力图、timeSlider时间滑块控件应用 (超详细、附免费教学数据、收藏!)

1.效果 目录 1.效果 2.安装配置 3.热力图 4.TimeSlider滑块应用 4.1 时间滑块控件 4.2 添加控件 5.时间动态热力图 2.安装配置 这里不教大家如何在前端框架使用arcgis api。不过npm安装、css如何引入、教学数据存放与图层加载的教程&#xff0c;可以浏览我之前发的一篇文…

基于DeepCFD模型和CNN/U-Net模型的流场预测

1.遇到问题 计算流体力学&#xff08;Computational fluid dynamics, CFD&#xff09;通过对Navier-Stokes方程&#xff08;简称N-S方程&#xff09;的精确求解&#xff0c;能够精准获取流体在不同状态下的物理量分布详情&#xff0c;这些物理量包括但不限于密度、压力及速度等…

Nginx从入门到入土(二): 学习内容与安装

Nginx学习内容 1.理解Nginx在实际项目中的应用场景 2.理解正向代理和反向代理 3.Nginx在Linux和Windows上的安装 4.Nginx的运行模型概念与日志管理 5.Nginx.config核心配置文件与配置HTTPS证书 6.基于Nginx解决跨域&#xff0c;实现防盗链&#xff0c;缓存&#xff0c;压…

windows C++ 并行编程-异步消息块(一)

代理库提供了多种消息块类型&#xff0c;使你能够以线程安全的方式在应用程序组件之间传播消息。 这些消息块类型通常与 concurrency::send、concurrency::asend、concurrency::receive 和 concurrency::try_receive 等各种消息传递例程配合使用。 本文包含以下各节&#xff1…

C#通过MXComponent与三菱PLC通信

1&#xff0c;MXComponent安装包与手册。 https://download.csdn.net/download/lingxiao16888/89767137 2&#xff0c;使用管理员权限打开MXComponent&#xff0c;并进行配置。 3&#xff0c;引用相应的类库。 //通信类库 ActUtlTypeLib.dll或者ActProgType.dll 注明&#x…

Excel常用函数大全

Excel常用函数介绍与示例应用 在Excel中&#xff0c;函数是进行数据处理和分析的强大工具。对于新手来说&#xff0c;掌握一些基本的函数使用方法能够大大提升工作效率。以下是一份通俗易懂、适合新手的Excel函数使用方法总结&#xff1a; 1. 求和函数&#xff08;SUM&#x…

leetcode75-9 压缩字符串 双指针原地算

题目太复杂了 没做出来 计算过程大概是双指针处理数组&#xff0c; 其中两个知识点一个是length 字符数组直接加 不用加括号 还有就是数字转字符需要转换 数字转换成字符 不能直接转换&#xff01; 需借助数字转字符串&#xff0c; 首先将数字转为字符串&#xff0c;…

C++---类与对象一

类的定义 class className{//成员字段//成员函数 };class定义类的关键字&#xff0c;className是自己决定的类名&#xff0c;{ } 为类的主体&#xff0c;花括号里是类的内容。类的内容大致分为类的成员属性&#xff08;变量&#xff09;和类的成员函数。注意定义类后面需要跟;…

SpringBoot - 基于 Java的超市进销存系统

专业团队&#xff0c;咨询就送开题报告&#xff0c;欢迎大家私信&#xff0c;留言&#xff0c;联系方式在文章底部 摘 要 随着信息化时代的到来&#xff0c;管理系统都趋向于智能化、系统化&#xff0c;超市进销存系统也不例外&#xff0c;但目前国内仍都使用人工管理&#xf…

【JUC】17-Synchronized锁升级

1. 锁分类 无锁->偏向锁->轻量级锁->重量级锁 synchronized属于重量级锁&#xff0c;monitor是基于底层os的mutex Lock实现了&#xff0c;挂起线程和恢复线程都需要内核态完成&#xff0c;都需要切换CPU状态来完成。 Monitor与对象以及线程如何关联&#xff1f;  1…

OV-DINO:统一开放词汇检测与语言感知选择性融合

文章目录 摘要1、引言2、相关工作3、方法3.1、概述3.2、统一数据集成3.3、语言感知选择性融合3.4、以检测为中心的预训练 4、实验4.1、预训练数据和评估指标4.2、实施细节4.3、主要结果4.4、消融研究4.5、定性结果 5 、讨论 摘要 开放词汇检测&#xff08;Open-vocabulary Det…