01—大模型技术学习建议
这个关于学习大模型技术的建议,也可以说是一个学习技术的方法论。
首先大家要明白一点——(任何)技术都是一个更偏向于实践的东西,具体来说就是学习技术实践要大于理论,要以实践为主理论为辅,而不是反其道而行之,但是在实际的经历和观察中,我发现很多人却是以理论为主,实践为辅。
知行合一,在知中行,在行中知
就拿写文章来说,越理论的东西看的人越多,真的涉及到实操的部分看的人反而变少了。
比如说,很多人对什么是人工智能,什么是神经网络,什么是大模型,什么是多模态大模型等等很感兴趣;但对大模型实际过程中的训练数据的收集与清洗,损失差和反向传播等核心操作却视若无睹。
但是这些理论的东西,每个理解过人工智能技术的人都能说上几句;但真的让他来实际操作从大模型的选型,模型的训练和部署来打造一个能用的大模型,这时他就开始傻眼了。
理论需不需要懂?
需要,但并不是特别需要;很多理论只是看别人的书和文章你是不会真正明白的,只有实际动手操作时才能真正理解理论。
就类似于java面试八股文,随便一个面试者都可以说上几句;但一旦涉及到具体的业务场景或技术场景,这时很多人就傻眼了,而这也是不同面试者之间的差距。
理论并不等于技术,技术也不等于理论,技术更多时候是理论和实践的结合;在实践中检验理论,在理论中指导实践,最后理论和实践互相验证,互相修正。
所以说,学习大模型技术最重要的是上手实践一下,不一定非要像openAI,谷歌,meta一样搞那么大的模型,哪怕只是设计一个两三层的神经网络模型,然后自己完成模型的设计,训练和部署也比一直看理论更有用。
或者是找一些开源的大模型项目,看看它们解决了哪些问题;是怎么做的,又为什么这么做,是否有其它解决方案;而且一些小模型个人电脑就可以跑的起来,或者找一些免费的GPU资源,比如谷歌的Colab平台。
这样你才能知道不同模型之间的差别是什么,怎么使用模型解决不同领域的问题等。
学习大模型的三个方向
很多人学习人工智能技术就一心扑在技术上,认为自己把技术学好了就一定能找到工作,一定能成为公司技术部核心成员;但大家要明白的一个事实是,技术是为业务服务的,技术的作用是解决业务问题,而不是搞学术研究。
学习大模型技术,个人认为有三个方向:
大模型基础技术大牛
说白了就是数学大牛,大模型技术本质就是一个数学模型,因此需要做这个方向的技术人员更多的是数学专业的大牛;比如说微分,概率,线性代数等。
他们的作用是设计更好的机器学习算法和打造更好的技术学习模型,比如怎么设计一个更好的神经网络,怎么设计更好的损失函数,怎么优化反向传播算法等。
这种工作更加偏向于底层技术和学术研究,而且这种人才待遇好,要求高,基本上不是名牌大学毕业的很难参与进来。
大模型“运维”人员
之所以说是“运维”人员,是这个方向需要做的就是根据企业的业务需求,找到合适的商业或开源模型,然后能够收集和处理训练数据,然后完成模型的训练,部署和升级等任务;能够熟练使用不同的模型和工具处理不同领域的问题。因为他们特别像传统的服务器维护人员,因此叫大模型“运维”。
这个技术方向就需要懂得大模型的基础理论,并且有很强的实操能力,然后有充足的业务经验,能够把大模型和业务场景相结合,因此这个更看重的是经验和实操,反而技术要求并不高,重要的是能够熟练使用各种工具。
大模型上层应用构建
再一个方向就是基于大模型构建上层应用,这个方向更像是一个传统的技术开发者,不需要了解大模型的运作原理,只需要能使用大模型的功能文档和接口文档即可,如果能懂一些大模型的理论就更好不过了。
个人建议
对大部分人来说,选择后两种方式比较好,最好是能把后两种方向结合起来。因为研究大模型基础技术的成本太高,绝大部分企业都没有足够的资金和技术来实现,因此其就业的压力和竞争力可想而知。
其次,后两个方向只需要有一定的经验和学习能力就可以做到,甚至很多程序员可以直接转行成为第三种大模型应用开发者。
所以,对大部分人来说,最好的选择就是搞大模型应用,门槛相对较低,前景广阔。
因此,对个人来说一定要弄清楚自己的定位,否则就会导致自己没有努力的方向;然后这个也想学,那个也想学,最后什么都会又什么都不会。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓