给大模型技术从业者的建议,入门转行必看!!

news2024/11/16 6:43:48

01—大模型技术学习建议‍‍‍

这个关于学习大模型技术的建议,也可以说是一个学习技术的方法论。

首先大家要明白一点——(任何)技术都是一个更偏向于实践的东西,具体来说就是学习技术实践要大于理论,要以实践为主理论为辅,而不是反其道而行之,但是在实际的经历和观察中,我发现很多人却是以理论为主,实践为辅。‍‍

知行合一,在知中行,在行中知‍‍‍‍‍‍‍‍‍

就拿写文章来说,越理论的东西看的人越多,真的涉及到实操的部分看的人反而变少了。

比如说,很多人对什么是人工智能,什么是神经网络,什么是大模型,什么是多模态大模型等等很感兴趣;但对大模型实际过程中的训练数据的收集与清洗,损失差和反向传播等核心操作却视若无睹。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但是这些理论的东西,每个理解过人工智能技术的人都能说上几句;但真的让他来实际操作从大模型的选型,模型的训练和部署来打造一个能用的大模型,这时他就开始傻眼了。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

在这里插入图片描述

理论需不需要懂?‍‍‍‍

需要,但并不是特别需要;很多理论只是看别人的书和文章你是不会真正明白的,只有实际动手操作时才能真正理解理论。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

就类似于java面试八股文,随便一个面试者都可以说上几句;但一旦涉及到具体的业务场景或技术场景,这时很多人就傻眼了,而这也是不同面试者之间的差距。‍‍‍‍‍‍‍‍‍‍‍‍‍‍

理论并不等于技术,技术也不等于理论,技术更多时候是理论和实践的结合;在实践中检验理论,在理论中指导实践,最后理论和实践互相验证,互相修正。‍‍‍‍

在这里插入图片描述

所以说,学习大模型技术最重要的是上手实践一下,不一定非要像openAI,谷歌,meta一样搞那么大的模型,哪怕只是设计一个两三层的神经网络模型,然后自己完成模型的设计,训练和部署也比一直看理论更有用。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

或者是找一些开源的大模型项目,看看它们解决了哪些问题;是怎么做的,又为什么这么做,是否有其它解决方案;而且一些小模型个人电脑就可以跑的起来,或者找一些免费的GPU资源,比如谷歌的Colab平台。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这样你才能知道不同模型之间的差别是什么,怎么使用模型解决不同领域的问题等。‍‍‍‍‍‍‍‍‍

学习大模型的三个方向‍‍

很多人学习人工智能技术就一心扑在技术上,认为自己把技术学好了就一定能找到工作,一定能成为公司技术部核心成员;但大家要明白的一个事实是,技术是为业务服务的,技术的作用是解决业务问题,而不是搞学术研究。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

学习大模型技术,个人认为有三个方向:‍

大模型基础技术大牛‍‍‍‍‍

说白了就是数学大牛,大模型技术本质就是一个数学模型,因此需要做这个方向的技术人员更多的是数学专业的大牛;比如说微分,概率,线性代数等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

他们的作用是设计更好的机器学习算法和打造更好的技术学习模型,比如怎么设计一个更好的神经网络,怎么设计更好的损失函数,怎么优化反向传播算法等。‍‍‍‍‍‍‍‍

这种工作更加偏向于底层技术和学术研究,而且这种人才待遇好,要求高,基本上不是名牌大学毕业的很难参与进来。‍‍‍‍‍‍‍‍‍

大模型“运维”人员‍‍‍‍

之所以说是“运维”人员,是这个方向需要做的就是根据企业的业务需求,找到合适的商业或开源模型,然后能够收集和处理训练数据,然后完成模型的训练,部署和升级等任务;能够熟练使用不同的模型和工具处理不同领域的问题。因为他们特别像传统的服务器维护人员,因此叫大模型“运维”。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这个技术方向就需要懂得大模型的基础理论,并且有很强的实操能力,然后有充足的业务经验,能够把大模型和业务场景相结合,因此这个更看重的是经验和实操,反而技术要求并不高,重要的是能够熟练使用各种工具。‍‍‍‍‍‍‍‍‍‍‍‍‍

大模型上层应用构建‍‍

再一个方向就是基于大模型构建上层应用,这个方向更像是一个传统的技术开发者,不需要了解大模型的运作原理,只需要能使用大模型的功能文档和接口文档即可,如果能懂一些大模型的理论就更好不过了。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

个人建议

对大部分人来说,选择后两种方式比较好,最好是能把后两种方向结合起来。因为研究大模型基础技术的成本太高,绝大部分企业都没有足够的资金和技术来实现,因此其就业的压力和竞争力可想而知。‍‍‍‍‍‍‍‍‍

其次,后两个方向只需要有一定的经验和学习能力就可以做到,甚至很多程序员可以直接转行成为第三种大模型应用开发者。‍‍‍‍‍‍‍‍

所以,对大部分人来说,最好的选择就是搞大模型应用,门槛相对较低,前景广阔。‍‍‍

因此,对个人来说一定要弄清楚自己的定位,否则就会导致自己没有努力的方向;然后这个也想学,那个也想学,最后什么都会又什么都不会。‍‍‍‍‍‍‍‍‍‍‍

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2143859.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

换个手机IP地址是不是不一样?

在当今这个信息爆炸的时代,手机已经成为我们生活中不可或缺的一部分。而IP地址,作为手机连接网络的桥梁,也时常引起我们的关注。你是否曾经好奇,换个手机,IP地址会不会也跟着变呢?本文将深入探讨这个问题&a…

Android15之编译Cuttlefish模拟器(二百三十一)

简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【…

直流斩波电路

目录 1. 降压斩波电路(Buck Converter) 2. 升压斩波电路(Boost Converter) 3. 升降压斩波电路(Buck-Boost Converter) 4. Cuk斩波电路(Cuk Converter) 直流斩波电路是一种将直流…

Unity3D下如何播放RTSP流?

技术背景 在Unity3D中直接播放RTSP(Real Time Streaming Protocol)流并不直接支持,因为Unity的内置多媒体组件(如AudioSource和VideoPlayer)主要设计用于处理本地文件或HTTP流,而不直接支持RTSP。所以&…

上海人工智能实验室开源视频生成模型Vchitect 2.0 可生成20秒高清视频

上海人工智能实验室日前推出的Vchitect2.0视频生成模型正在悄然改变视频创作的游戏规则。这款尖端AI工具不仅简化了视频制作流程,还为创作者提供了前所未有的灵活性和高质量输出。 Vchitect2.0的核心优势在于其强大的生成能力和高度的可定制性。用户只需输入文字描…

用Matlab求解绘制2D散点(x y)数据的最小外接圆、沿轴外接矩形

用Matlab求解绘制2D散点(x y)数据的最小外接圆、沿轴外接矩形 0 引言1 原理概述即代码实现1.1 最小外接圆1.2 沿轴外接矩形 2 完整代码3 结语 0 引言 本篇简单介绍下散点数据最小外接圆、沿轴外接矩形的简单原理和matlab实现过程。 1 原理概述即代码实现…

C语言-数据结构 有向图拓扑排序TopologicalSort(邻接表存储)

拓扑排序算法的实现还是比较简单的,我们需要用到一个顺序栈辅助,采用邻接表进行存储,顶点结点存储入度、顶点信息、指向邻接结点的指针,算法过程是:我们先将入度为0的顶点入栈,然后弹出栈顶结点&#xff0c…

使用CUBE_MX使用I2C通信,实现对EEPROM的读写

一、使用CUBE_MX配置 1.配置I2C 2.配置USART1 3.重中之重(在KEIL5打开串口使用的库) 二、KEIL5配置 #include "main.h" #include "i2c.h" #include "gpio.h" #include "usart.h"#include <stdio.h>void SystemClock_Config(vo…

flash_attention简要笔记

优化效果 原来&#xff0c;attention部分的计算量和中间激活占用显存的复杂度都是 O ( N 2 ) O(N^2) O(N2) 计算量部分原来QK矩阵乘和attn_scoreV矩阵乘的计算量&#xff0c;复杂度都是 O ( N 2 ) O(N^2) O(N2)&#xff1b;中间激活因为中间有一个attn_score&#xff0c;所以复…

如何接口对接发送视频短信

随着移动通信技术的飞速发展&#xff0c;视频短信作为一种创新的多媒体信息传递方式&#xff0c;正逐渐成为众多行业不可或缺的沟通工具。它不仅丰富了信息传递的形式&#xff0c;还显著提高了信息接收者的参与度和满意度。 支持免费对接试用乐讯通PaaS平台 找好用的短信平台,选…

数据结构:(OJ141)环形列表

给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&#xff08;…

探索iPhone一键删除重复照片的方法

在iPhone用户的生活中&#xff0c;存在一个不变的真理&#xff1a;不管你的照片库有多干净&#xff0c;重复的照片总会找到一种方法悄无声息地积累起来&#xff0c;就像袜子在洗衣机中神秘消失那样不可思议。而当你最终决定处理这些重复照片时&#xff0c;你可能已经面临着一个…

Electron 图标修改

目录 1. 图片基本要求 2. 在main.js中配置icon 位置 ​3. 在package.json 中配置icon 位置 4. 问题&#xff1a;左上角图片 开发环境下显示&#xff0c;生产环境下不显示 1. 图片基本要求 图片格式为ico&#xff0c;图片像素像素为256*256&#xff1b; 将ico文件放在pub…

基于Springboot的医疗健康助手开题报告

文未可获取一份本项目的java源码和数据库参考。 一&#xff0e;选题意义, 研究现状,可行性分析 选题意义&#xff1a;随着科技的高速发展&#xff0c;人们的生活水平也正在稳步提高&#xff0c;解决温饱问题以后&#xff0c;广大人民群众也越来越注重自己的身体健康&#xff0…

openGauss 基于PITR的恢复

作者&#xff1a;IT邦德 中国DBA联盟(ACDU)成员&#xff0c;10余年DBA工作经验&#xff0c; Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主&#xff0c;全网粉丝10万 擅长主流Oracle、MySQL、PG、高斯及Greenplum备份恢复&#xff0c; 安装迁移&#xff0c;性能优化、故障…

聚焦汽车智能化与电动化,亚洲领先的汽车工业技术博览会 2025年11月与您相约 AUTO TECH 华南展

抢占市场先机︱聚焦汽车智能化与电动化&#xff0c;亚洲领先的汽车工业技术博览会 2025年11月与您相约 AUTO TECH 华南展 随着汽车智能化与电动化的迅猛发展&#xff0c;汽车电子技术、车用功率半导体技术、智能座舱技术、轻量化技术/材料、软件定义汽车、EV/HV技术、测试测量技…

python之openpyxl模块——实现Excel表格的处理(万字教学,全网最全,超详细!)

文章目录 前言1、Excel表格介绍扩展&#xff1a;.xls 和 .xlsx 2、openpyxl 模块2.1 模块的安装2.2 基础操作2.2.1 生成Excel文件对象&#xff0c;查看所有sheet表2.2.2 通过表名得到表对象2.2.3 获取活动表对象2.2.4 获取表格中数据所占大小2.2.5 获取单元格中的数据2.2.6 获取…

flask搭建微服务器并训练CNN水果识别模型应用于网页

一. 搭建flask环境 概念 flask:一个轻量级 Web 应用框架&#xff0c;被设计为简单、灵活&#xff0c;能够快速启动一个 Web 项目。CNN:深度学习模型&#xff0c;用于处理具有网格状拓扑结构的数据&#xff0c;如图像&#xff08;2D网格&#xff09;和视频&#xff08;3D网格&a…

集成学习详细介绍

以下内容整理于&#xff1a; 斯图尔特.罗素, 人工智能.现代方法 第四版(张博雅等译)机器学习_温州大学_中国大学MOOC(慕课)XGBoost原理介绍------个人理解版_xgboost原理介绍 个人理解-CSDN博客 集成学习(ensemble)&#xff1a;选择一个由一系列假设h1, h2, …, hn构成的集合…

LLM大模型基础知识学习总结,零基础入门到精通 非常详细收藏我这一篇就够了

在这个已经被大模型包围的时代&#xff0c;不了解一点大模型的基础知识和相关概念&#xff0c;可能出去聊天都接不上话。刚好近期我也一直在用ChatGPT和GitHub Copilot&#xff0c;也刚好对这些基础知识很感兴趣&#xff0c;于是看了一些科普类视频和报告&#xff0c;做了如下的…