YOLOV8输出预测框的坐标信息

news2025/3/13 5:33:42

结果:(前提是对应类别的yolov8模型已经训练好)

具体实现:

ultralytics\utils\plotting.py里面

Ctrl+F搜索box_label

再次照片的最后一行输入:

# 左上角
                cv2.putText(self.im, f"({p1[0]}, {p1[1]})", (p1[0], p1[1]+20), 0, self.lw / 3, (0, 0, 225), thickness=2, lineType=cv2.LINE_AA)
                # 右上角
                cv2.putText(self.im, f"({p2[0]}, {p1[1]})", (p2[0], p1[1]+20), 0, self.lw / 3, (0, 0, 225), thickness=2, lineType=cv2.LINE_AA)
                # 左下角
                cv2.putText(self.im, f"({p1[0]}, {p2[1]})", (p1[0]-20, p2[1]+20), 0, self.lw / 3, (0, 0, 225), thickness=2, lineType=cv2.LINE_AA)
                # 右下角
                cv2.putText(self.im, f"({p2[0]}, {p2[1]})", (p2[0]-20, p2[1]+20), 0, self.lw / 3, (0, 0, 225), thickness=2, lineType=cv2.LINE_AA)

复制到相应位置测试文件及命令即可达到想要的效果

plotting.py完整代码如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
import math
import warnings
from pathlib import Path
from typing import Callable, Dict, List, Optional, Union

import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from PIL import __version__ as pil_version

from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
from ultralytics.utils.checks import check_font, check_version, is_ascii
from ultralytics.utils.files import increment_path


class Colors:
    """
    Ultralytics default color palette https://ultralytics.com/.

    This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
    RGB values.

    Attributes:
        palette (list of tuple): List of RGB color values.
        n (int): The number of colors in the palette.
        pose_palette (np.ndarray): A specific color palette array with dtype np.uint8.
    """

    def __init__(self):
        """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
        hexs = (
            "042AFF",
            "0BDBEB",
            "F3F3F3",
            "00DFB7",
            "111F68",
            "FF6FDD",
            "FF444F",
            "CCED00",
            "00F344",
            "BD00FF",
            "00B4FF",
            "DD00BA",
            "00FFFF",
            "26C000",
            "01FFB3",
            "7D24FF",
            "7B0068",
            "FF1B6C",
            "FC6D2F",
            "A2FF0B",
        )
        self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
        self.n = len(self.palette)
        self.pose_palette = np.array(
            [
                [255, 128, 0],
                [255, 153, 51],
                [255, 178, 102],
                [230, 230, 0],
                [255, 153, 255],
                [153, 204, 255],
                [255, 102, 255],
                [255, 51, 255],
                [102, 178, 255],
                [51, 153, 255],
                [255, 153, 153],
                [255, 102, 102],
                [255, 51, 51],
                [153, 255, 153],
                [102, 255, 102],
                [51, 255, 51],
                [0, 255, 0],
                [0, 0, 255],
                [255, 0, 0],
                [255, 255, 255],
            ],
            dtype=np.uint8,
        )

    def __call__(self, i, bgr=False):
        """Converts hex color codes to RGB values."""
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):
        """Converts hex color codes to RGB values (i.e. default PIL order)."""
        return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))


colors = Colors()  # create instance for 'from utils.plots import colors'


class Annotator:
    """
    Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.

    Attributes:
        im (Image.Image or numpy array): The image to annotate.
        pil (bool): Whether to use PIL or cv2 for drawing annotations.
        font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.
        lw (float): Line width for drawing.
        skeleton (List[List[int]]): Skeleton structure for keypoints.
        limb_color (List[int]): Color palette for limbs.
        kpt_color (List[int]): Color palette for keypoints.
    """

    def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
        """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
        non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
        input_is_pil = isinstance(im, Image.Image)
        self.pil = pil or non_ascii or input_is_pil
        self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
        if self.pil:  # use PIL
            self.im = im if input_is_pil else Image.fromarray(im)
            self.draw = ImageDraw.Draw(self.im)
            try:
                font = check_font("Arial.Unicode.ttf" if non_ascii else font)
                size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
                self.font = ImageFont.truetype(str(font), size)
            except Exception:
                self.font = ImageFont.load_default()
            # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
            if check_version(pil_version, "9.2.0"):
                self.font.getsize = lambda x: self.font.getbbox(x)[2:4]  # text width, height
        else:  # use cv2
            assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
            self.im = im if im.flags.writeable else im.copy()
            self.tf = max(self.lw - 1, 1)  # font thickness
            self.sf = self.lw / 3  # font scale
        # Pose
        self.skeleton = [
            [16, 14],
            [14, 12],
            [17, 15],
            [15, 13],
            [12, 13],
            [6, 12],
            [7, 13],
            [6, 7],
            [6, 8],
            [7, 9],
            [8, 10],
            [9, 11],
            [2, 3],
            [1, 2],
            [1, 3],
            [2, 4],
            [3, 5],
            [4, 6],
            [5, 7],
        ]

        self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
        self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
        self.dark_colors = {
            (235, 219, 11),
            (243, 243, 243),
            (183, 223, 0),
            (221, 111, 255),
            (0, 237, 204),
            (68, 243, 0),
            (255, 255, 0),
            (179, 255, 1),
            (11, 255, 162),
        }
        self.light_colors = {
            (255, 42, 4),
            (79, 68, 255),
            (255, 0, 189),
            (255, 180, 0),
            (186, 0, 221),
            (0, 192, 38),
            (255, 36, 125),
            (104, 0, 123),
            (108, 27, 255),
            (47, 109, 252),
            (104, 31, 17),
        }

    def get_txt_color(self, color=(128, 128, 128), txt_color=(255, 255, 255)):
        """Assign text color based on background color."""
        if color in self.dark_colors:
            return 104, 31, 17
        elif color in self.light_colors:
            return 255, 255, 255
        else:
            return txt_color

    def circle_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), margin=2):
        """
        Draws a label with a background circle centered within a given bounding box.

        Args:
            box (tuple): The bounding box coordinates (x1, y1, x2, y2).
            label (str): The text label to be displayed.
            color (tuple, optional): The background color of the rectangle (B, G, R).
            txt_color (tuple, optional): The color of the text (R, G, B).
            margin (int, optional): The margin between the text and the rectangle border.
        """
        # If label have more than 3 characters, skip other characters, due to circle size
        if len(label) > 3:
            print(
                f"Length of label is {len(label)}, initial 3 label characters will be considered for circle annotation!"
            )
            label = label[:3]

        # Calculate the center of the box
        x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
        # Get the text size
        text_size = cv2.getTextSize(str(label), cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.15, self.tf)[0]
        # Calculate the required radius to fit the text with the margin
        required_radius = int(((text_size[0] ** 2 + text_size[1] ** 2) ** 0.5) / 2) + margin
        # Draw the circle with the required radius
        cv2.circle(self.im, (x_center, y_center), required_radius, color, -1)
        # Calculate the position for the text
        text_x = x_center - text_size[0] // 2
        text_y = y_center + text_size[1] // 2
        # Draw the text
        cv2.putText(
            self.im,
            str(label),
            (text_x, text_y),
            cv2.FONT_HERSHEY_SIMPLEX,
            self.sf - 0.15,
            self.get_txt_color(color, txt_color),
            self.tf,
            lineType=cv2.LINE_AA,
        )

    def text_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), margin=5):
        """
        Draws a label with a background rectangle centered within a given bounding box.

        Args:
            box (tuple): The bounding box coordinates (x1, y1, x2, y2).
            label (str): The text label to be displayed.
            color (tuple, optional): The background color of the rectangle (B, G, R).
            txt_color (tuple, optional): The color of the text (R, G, B).
            margin (int, optional): The margin between the text and the rectangle border.
        """
        # Calculate the center of the bounding box
        x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
        # Get the size of the text
        text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.1, self.tf)[0]
        # Calculate the top-left corner of the text (to center it)
        text_x = x_center - text_size[0] // 2
        text_y = y_center + text_size[1] // 2
        # Calculate the coordinates of the background rectangle
        rect_x1 = text_x - margin
        rect_y1 = text_y - text_size[1] - margin
        rect_x2 = text_x + text_size[0] + margin
        rect_y2 = text_y + margin
        # Draw the background rectangle
        cv2.rectangle(self.im, (rect_x1, rect_y1), (rect_x2, rect_y2), color, -1)
        # Draw the text on top of the rectangle
        cv2.putText(
            self.im,
            label,
            (text_x, text_y),
            cv2.FONT_HERSHEY_SIMPLEX,
            self.sf - 0.1,
            self.get_txt_color(color, txt_color),
            self.tf,
            lineType=cv2.LINE_AA,
        )

    def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
        """
        Draws a bounding box to image with label.

        Args:
            box (tuple): The bounding box coordinates (x1, y1, x2, y2).
            label (str): The text label to be displayed.
            color (tuple, optional): The background color of the rectangle (B, G, R).
            txt_color (tuple, optional): The color of the text (R, G, B).
            rotated (bool, optional): Variable used to check if task is OBB
        """
        txt_color = self.get_txt_color(color, txt_color)
        if isinstance(box, torch.Tensor):
            box = box.tolist()
        if self.pil or not is_ascii(label):
            if rotated:
                p1 = box[0]
                self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)  # PIL requires tuple box
            else:
                p1 = (box[0], box[1])
                self.draw.rectangle(box, width=self.lw, outline=color)  # box
            if label:
                w, h = self.font.getsize(label)  # text width, height
                outside = p1[1] >= h  # label fits outside box
                if p1[0] > self.im.size[0] - w:  # size is (w, h), check if label extend beyond right side of image
                    p1 = self.im.size[0] - w, p1[1]
                self.draw.rectangle(
                    (p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
                    fill=color,
                )
                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
                self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
        else:  # cv2
            if rotated:
                p1 = [int(b) for b in box[0]]
                cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)  # cv2 requires nparray box
            else:
                p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
                cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
                # 在预测图中绘制一个中心坐标红点
            # center_x = (p1[0] + p2[0]) // 2
            # center_y = (p1[1] + p2[1]) // 2
            # cv2.circle(self.im, (center_x, center_y), self.lw, (0, 0, 225), self.lw)

            # 创建中心点坐标变量
            # Center = (center_x, center_y)

            # 用于在图像上添加文本
            # cv2.putText(self.im, str(Center), (center_x, center_y), 0, self.lw / 3, (0, 0, 225), thickness=4, lineType=cv2.LINE_AA)

            # 添加左上角、右上角、左下角和右下角的坐标
                # 左上角
                cv2.putText(self.im, f"({p1[0]}, {p1[1]})", (p1[0], p1[1]+20), 0, self.lw / 3, (0, 0, 225), thickness=2, lineType=cv2.LINE_AA)
                # 右上角
                cv2.putText(self.im, f"({p2[0]}, {p1[1]})", (p2[0], p1[1]+20), 0, self.lw / 3, (0, 0, 225), thickness=2, lineType=cv2.LINE_AA)
                # 左下角
                cv2.putText(self.im, f"({p1[0]}, {p2[1]})", (p1[0]-20, p2[1]+20), 0, self.lw / 3, (0, 0, 225), thickness=2, lineType=cv2.LINE_AA)
                # 右下角
                cv2.putText(self.im, f"({p2[0]}, {p2[1]})", (p2[0]-20, p2[1]+20), 0, self.lw / 3, (0, 0, 225), thickness=2, lineType=cv2.LINE_AA)
    
            if label:
                w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
                h += 3  # add pixels to pad text
                outside = p1[1] >= h  # label fits outside box
                if p1[0] > self.im.shape[1] - w:  # shape is (h, w), check if label extend beyond right side of image
                    p1 = self.im.shape[1] - w, p1[1]
                p2 = p1[0] + w, p1[1] - h if outside else p1[1] + h
                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
                cv2.putText(
                    self.im,
                    label,
                    (p1[0], p1[1] - 2 if outside else p1[1] + h - 1),
                    0,
                    self.sf,
                    txt_color,
                    thickness=self.tf,
                    lineType=cv2.LINE_AA,
                )

    def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
        """
        Plot masks on image.

        Args:
            masks (tensor): Predicted masks on cuda, shape: [n, h, w]
            colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
            im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
            alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
            retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        if len(masks) == 0:
            self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
        if im_gpu.device != masks.device:
            im_gpu = im_gpu.to(masks.device)
        colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0  # shape(n,3)
        colors = colors[:, None, None]  # shape(n,1,1,3)
        masks = masks.unsqueeze(3)  # shape(n,h,w,1)
        masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

        inv_alpha_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
        mcs = masks_color.max(dim=0).values  # shape(n,h,w,3)

        im_gpu = im_gpu.flip(dims=[0])  # flip channel
        im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
        im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
        im_mask = im_gpu * 255
        im_mask_np = im_mask.byte().cpu().numpy()
        self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True, conf_thres=0.25, kpt_color=None):
        """
        Plot keypoints on the image.

        Args:
            kpts (torch.Tensor): Keypoints, shape [17, 3] (x, y, confidence).
            shape (tuple, optional): Image shape (h, w). Defaults to (640, 640).
            radius (int, optional): Keypoint radius. Defaults to 5.
            kpt_line (bool, optional): Draw lines between keypoints. Defaults to True.
            conf_thres (float, optional): Confidence threshold. Defaults to 0.25.
            kpt_color (tuple, optional): Keypoint color (B, G, R). Defaults to None.

        Note:
            - `kpt_line=True` currently only supports human pose plotting.
            - Modifies self.im in-place.
            - If self.pil is True, converts image to numpy array and back to PIL.
        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        nkpt, ndim = kpts.shape
        is_pose = nkpt == 17 and ndim in {2, 3}
        kpt_line &= is_pose  # `kpt_line=True` for now only supports human pose plotting
        for i, k in enumerate(kpts):
            color_k = kpt_color or (self.kpt_color[i].tolist() if is_pose else colors(i))
            x_coord, y_coord = k[0], k[1]
            if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                if len(k) == 3:
                    conf = k[2]
                    if conf < conf_thres:
                        continue
                cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)

        if kpt_line:
            ndim = kpts.shape[-1]
            for i, sk in enumerate(self.skeleton):
                pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
                pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
                if ndim == 3:
                    conf1 = kpts[(sk[0] - 1), 2]
                    conf2 = kpts[(sk[1] - 1), 2]
                    if conf1 < conf_thres or conf2 < conf_thres:
                        continue
                if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
                    continue
                if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
                    continue
                cv2.line(
                    self.im,
                    pos1,
                    pos2,
                    kpt_color or self.limb_color[i].tolist(),
                    thickness=2,
                    lineType=cv2.LINE_AA,
                )
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def rectangle(self, xy, fill=None, outline=None, width=1):
        """Add rectangle to image (PIL-only)."""
        self.draw.rectangle(xy, fill, outline, width)

    def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
        """Adds text to an image using PIL or cv2."""
        if anchor == "bottom":  # start y from font bottom
            w, h = self.font.getsize(text)  # text width, height
            xy[1] += 1 - h
        if self.pil:
            if box_style:
                w, h = self.font.getsize(text)
                self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            if "\n" in text:
                lines = text.split("\n")
                _, h = self.font.getsize(text)
                for line in lines:
                    self.draw.text(xy, line, fill=txt_color, font=self.font)
                    xy[1] += h
            else:
                self.draw.text(xy, text, fill=txt_color, font=self.font)
        else:
            if box_style:
                w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
                h += 3  # add pixels to pad text
                outside = xy[1] >= h  # label fits outside box
                p2 = xy[0] + w, xy[1] - h if outside else xy[1] + h
                cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)  # filled
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)

    def fromarray(self, im):
        """Update self.im from a numpy array."""
        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)

    def result(self):
        """Return annotated image as array."""
        return np.asarray(self.im)

    def show(self, title=None):
        """Show the annotated image."""
        Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)

    def save(self, filename="image.jpg"):
        """Save the annotated image to 'filename'."""
        cv2.imwrite(filename, np.asarray(self.im))

    def get_bbox_dimension(self, bbox=None):
        """
        Calculate the area of a bounding box.

        Args:
            bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max).

        Returns:
            angle (degree): Degree value of angle between three points
        """
        x_min, y_min, x_max, y_max = bbox
        width = x_max - x_min
        height = y_max - y_min
        return width, height, width * height

    def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
        """
        Draw region line.

        Args:
            reg_pts (list): Region Points (for line 2 points, for region 4 points)
            color (tuple): Region Color value
            thickness (int): Region area thickness value
        """
        cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)

    def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
        """
        Draw centroid point and track trails.

        Args:
            track (list): object tracking points for trails display
            color (tuple): tracks line color
            track_thickness (int): track line thickness value
        """
        points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
        cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)

    def queue_counts_display(self, label, points=None, region_color=(255, 255, 255), txt_color=(0, 0, 0)):
        """
        Displays queue counts on an image centered at the points with customizable font size and colors.

        Args:
            label (str): queue counts label
            points (tuple): region points for center point calculation to display text
            region_color (RGB): queue region color
            txt_color (RGB): text display color
        """
        x_values = [point[0] for point in points]
        y_values = [point[1] for point in points]
        center_x = sum(x_values) // len(points)
        center_y = sum(y_values) // len(points)

        text_size = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]
        text_width = text_size[0]
        text_height = text_size[1]

        rect_width = text_width + 20
        rect_height = text_height + 20
        rect_top_left = (center_x - rect_width // 2, center_y - rect_height // 2)
        rect_bottom_right = (center_x + rect_width // 2, center_y + rect_height // 2)
        cv2.rectangle(self.im, rect_top_left, rect_bottom_right, region_color, -1)

        text_x = center_x - text_width // 2
        text_y = center_y + text_height // 2

        # Draw text
        cv2.putText(
            self.im,
            label,
            (text_x, text_y),
            0,
            fontScale=self.sf,
            color=txt_color,
            thickness=self.tf,
            lineType=cv2.LINE_AA,
        )

    def display_objects_labels(self, im0, text, txt_color, bg_color, x_center, y_center, margin):
        """
        Display the bounding boxes labels in parking management app.

        Args:
            im0 (ndarray): inference image
            text (str): object/class name
            txt_color (bgr color): display color for text foreground
            bg_color (bgr color): display color for text background
            x_center (float): x position center point for bounding box
            y_center (float): y position center point for bounding box
            margin (int): gap between text and rectangle for better display
        """
        text_size = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
        text_x = x_center - text_size[0] // 2
        text_y = y_center + text_size[1] // 2

        rect_x1 = text_x - margin
        rect_y1 = text_y - text_size[1] - margin
        rect_x2 = text_x + text_size[0] + margin
        rect_y2 = text_y + margin
        cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
        cv2.putText(im0, text, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)

    def display_analytics(self, im0, text, txt_color, bg_color, margin):
        """
        Display the overall statistics for parking lots.

        Args:
            im0 (ndarray): inference image
            text (dict): labels dictionary
            txt_color (bgr color): display color for text foreground
            bg_color (bgr color): display color for text background
            margin (int): gap between text and rectangle for better display
        """
        horizontal_gap = int(im0.shape[1] * 0.02)
        vertical_gap = int(im0.shape[0] * 0.01)
        text_y_offset = 0
        for label, value in text.items():
            txt = f"{label}: {value}"
            text_size = cv2.getTextSize(txt, 0, self.sf, self.tf)[0]
            if text_size[0] < 5 or text_size[1] < 5:
                text_size = (5, 5)
            text_x = im0.shape[1] - text_size[0] - margin * 2 - horizontal_gap
            text_y = text_y_offset + text_size[1] + margin * 2 + vertical_gap
            rect_x1 = text_x - margin * 2
            rect_y1 = text_y - text_size[1] - margin * 2
            rect_x2 = text_x + text_size[0] + margin * 2
            rect_y2 = text_y + margin * 2
            cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
            cv2.putText(im0, txt, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)
            text_y_offset = rect_y2

    @staticmethod
    def estimate_pose_angle(a, b, c):
        """
        Calculate the pose angle for object.

        Args:
            a (float) : The value of pose point a
            b (float): The value of pose point b
            c (float): The value o pose point c

        Returns:
            angle (degree): Degree value of angle between three points
        """
        a, b, c = np.array(a), np.array(b), np.array(c)
        radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
        angle = np.abs(radians * 180.0 / np.pi)
        if angle > 180.0:
            angle = 360 - angle
        return angle

    def draw_specific_points(self, keypoints, indices=None, shape=(640, 640), radius=2, conf_thres=0.25):
        """
        Draw specific keypoints for gym steps counting.

        Args:
            keypoints (list): Keypoints data to be plotted.
            indices (list, optional): Keypoint indices to be plotted. Defaults to [2, 5, 7].
            shape (tuple, optional): Image size for model inference. Defaults to (640, 640).
            radius (int, optional): Keypoint radius. Defaults to 2.
            conf_thres (float, optional): Confidence threshold for keypoints. Defaults to 0.25.

        Returns:
            (numpy.ndarray): Image with drawn keypoints.

        Note:
            Keypoint format: [x, y] or [x, y, confidence].
            Modifies self.im in-place.
        """
        if indices is None:
            indices = [2, 5, 7]
        for i, k in enumerate(keypoints):
            if i in indices:
                x_coord, y_coord = k[0], k[1]
                if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                    if len(k) == 3:
                        conf = k[2]
                        if conf < conf_thres:
                            continue
                    cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
        return self.im

    def plot_angle_and_count_and_stage(
        self, angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255)
    ):
        """
        Plot the pose angle, count value and step stage.

        Args:
            angle_text (str): angle value for workout monitoring
            count_text (str): counts value for workout monitoring
            stage_text (str): stage decision for workout monitoring
            center_kpt (list): centroid pose index for workout monitoring
            color (tuple): text background color for workout monitoring
            txt_color (tuple): text foreground color for workout monitoring
        """
        angle_text, count_text, stage_text = (f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}")

        # Draw angle
        (angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, 0, self.sf, self.tf)
        angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
        angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
        angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (self.tf * 2))
        cv2.rectangle(
            self.im,
            angle_background_position,
            (
                angle_background_position[0] + angle_background_size[0],
                angle_background_position[1] + angle_background_size[1],
            ),
            color,
            -1,
        )
        cv2.putText(self.im, angle_text, angle_text_position, 0, self.sf, txt_color, self.tf)

        # Draw Counts
        (count_text_width, count_text_height), _ = cv2.getTextSize(count_text, 0, self.sf, self.tf)
        count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
        count_background_position = (
            angle_background_position[0],
            angle_background_position[1] + angle_background_size[1] + 5,
        )
        count_background_size = (count_text_width + 10, count_text_height + 10 + self.tf)

        cv2.rectangle(
            self.im,
            count_background_position,
            (
                count_background_position[0] + count_background_size[0],
                count_background_position[1] + count_background_size[1],
            ),
            color,
            -1,
        )
        cv2.putText(self.im, count_text, count_text_position, 0, self.sf, txt_color, self.tf)

        # Draw Stage
        (stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, 0, self.sf, self.tf)
        stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
        stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
        stage_background_size = (stage_text_width + 10, stage_text_height + 10)

        cv2.rectangle(
            self.im,
            stage_background_position,
            (
                stage_background_position[0] + stage_background_size[0],
                stage_background_position[1] + stage_background_size[1],
            ),
            color,
            -1,
        )
        cv2.putText(self.im, stage_text, stage_text_position, 0, self.sf, txt_color, self.tf)

    def seg_bbox(self, mask, mask_color=(255, 0, 255), label=None, txt_color=(255, 255, 255)):
        """
        Function for drawing segmented object in bounding box shape.

        Args:
            mask (list): masks data list for instance segmentation area plotting
            mask_color (RGB): mask foreground color
            label (str): Detection label text
            txt_color (RGB): text color
        """
        cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
        text_size, _ = cv2.getTextSize(label, 0, self.sf, self.tf)

        cv2.rectangle(
            self.im,
            (int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
            (int(mask[0][0]) + text_size[0] // 2 + 10, int(mask[0][1] + 10)),
            mask_color,
            -1,
        )

        if label:
            cv2.putText(
                self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1])), 0, self.sf, txt_color, self.tf
            )

    def plot_distance_and_line(self, distance_m, distance_mm, centroids, line_color, centroid_color):
        """
        Plot the distance and line on frame.

        Args:
            distance_m (float): Distance between two bbox centroids in meters.
            distance_mm (float): Distance between two bbox centroids in millimeters.
            centroids (list): Bounding box centroids data.
            line_color (RGB): Distance line color.
            centroid_color (RGB): Bounding box centroid color.
        """
        (text_width_m, text_height_m), _ = cv2.getTextSize(f"Distance M: {distance_m:.2f}m", 0, self.sf, self.tf)
        cv2.rectangle(self.im, (15, 25), (15 + text_width_m + 10, 25 + text_height_m + 20), line_color, -1)
        cv2.putText(
            self.im,
            f"Distance M: {distance_m:.2f}m",
            (20, 50),
            0,
            self.sf,
            centroid_color,
            self.tf,
            cv2.LINE_AA,
        )

        (text_width_mm, text_height_mm), _ = cv2.getTextSize(f"Distance MM: {distance_mm:.2f}mm", 0, self.sf, self.tf)
        cv2.rectangle(self.im, (15, 75), (15 + text_width_mm + 10, 75 + text_height_mm + 20), line_color, -1)
        cv2.putText(
            self.im,
            f"Distance MM: {distance_mm:.2f}mm",
            (20, 100),
            0,
            self.sf,
            centroid_color,
            self.tf,
            cv2.LINE_AA,
        )

        cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
        cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
        cv2.circle(self.im, centroids[1], 6, centroid_color, -1)

    def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255)):
        """
        Function for pinpoint human-vision eye mapping and plotting.

        Args:
            box (list): Bounding box coordinates
            center_point (tuple): center point for vision eye view
            color (tuple): object centroid and line color value
            pin_color (tuple): visioneye point color value
        """
        center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
        cv2.circle(self.im, center_point, self.tf * 2, pin_color, -1)
        cv2.circle(self.im, center_bbox, self.tf * 2, color, -1)
        cv2.line(self.im, center_point, center_bbox, color, self.tf)


@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
    """Plot training labels including class histograms and box statistics."""
    import pandas  # scope for faster 'import ultralytics'
    import seaborn  # scope for faster 'import ultralytics'

    # Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings
    warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight")
    warnings.filterwarnings("ignore", category=FutureWarning)

    # Plot dataset labels
    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
    nc = int(cls.max() + 1)  # number of classes
    boxes = boxes[:1000000]  # limit to 1M boxes
    x = pandas.DataFrame(boxes, columns=["x", "y", "width", "height"])

    # Seaborn correlogram
    seaborn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
    plt.close()

    # Matplotlib labels
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    for i in range(nc):
        y[2].patches[i].set_color([x / 255 for x in colors(i)])
    ax[0].set_ylabel("instances")
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel("classes")
    seaborn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
    seaborn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)

    # Rectangles
    boxes[:, 0:2] = 0.5  # center
    boxes = ops.xywh2xyxy(boxes) * 1000
    img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
    for cls, box in zip(cls[:500], boxes[:500]):
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis("off")

    for a in [0, 1, 2, 3]:
        for s in ["top", "right", "left", "bottom"]:
            ax[a].spines[s].set_visible(False)

    fname = save_dir / "labels.jpg"
    plt.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)


def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
    """
    Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.

    This function takes a bounding box and an image, and then saves a cropped portion of the image according
    to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
    adjustments to the bounding box.

    Args:
        xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.
        im (numpy.ndarray): The input image.
        file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.
        gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.
        pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.
        square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.
        BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.
        save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.

    Returns:
        (numpy.ndarray): The cropped image.

    Example:
        ```python
        from ultralytics.utils.plotting import save_one_box

        xyxy = [50, 50, 150, 150]
        im = cv2.imread("image.jpg")
        cropped_im = save_one_box(xyxy, im, file="cropped.jpg", square=True)
        ```
    """
    if not isinstance(xyxy, torch.Tensor):  # may be list
        xyxy = torch.stack(xyxy)
    b = ops.xyxy2xywh(xyxy.view(-1, 4))  # boxes
    if square:
        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = ops.xywh2xyxy(b).long()
    xyxy = ops.clip_boxes(xyxy, im.shape)
    crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
    if save:
        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
        f = str(increment_path(file).with_suffix(".jpg"))
        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
    return crop


@threaded
def plot_images(
    images: Union[torch.Tensor, np.ndarray],
    batch_idx: Union[torch.Tensor, np.ndarray],
    cls: Union[torch.Tensor, np.ndarray],
    bboxes: Union[torch.Tensor, np.ndarray] = np.zeros(0, dtype=np.float32),
    confs: Optional[Union[torch.Tensor, np.ndarray]] = None,
    masks: Union[torch.Tensor, np.ndarray] = np.zeros(0, dtype=np.uint8),
    kpts: Union[torch.Tensor, np.ndarray] = np.zeros((0, 51), dtype=np.float32),
    paths: Optional[List[str]] = None,
    fname: str = "images.jpg",
    names: Optional[Dict[int, str]] = None,
    on_plot: Optional[Callable] = None,
    max_size: int = 1920,
    max_subplots: int = 16,
    save: bool = True,
    conf_thres: float = 0.25,
) -> Optional[np.ndarray]:
    """
    Plot image grid with labels, bounding boxes, masks, and keypoints.

    Args:
        images: Batch of images to plot. Shape: (batch_size, channels, height, width).
        batch_idx: Batch indices for each detection. Shape: (num_detections,).
        cls: Class labels for each detection. Shape: (num_detections,).
        bboxes: Bounding boxes for each detection. Shape: (num_detections, 4) or (num_detections, 5) for rotated boxes.
        confs: Confidence scores for each detection. Shape: (num_detections,).
        masks: Instance segmentation masks. Shape: (num_detections, height, width) or (1, height, width).
        kpts: Keypoints for each detection. Shape: (num_detections, 51).
        paths: List of file paths for each image in the batch.
        fname: Output filename for the plotted image grid.
        names: Dictionary mapping class indices to class names.
        on_plot: Optional callback function to be called after saving the plot.
        max_size: Maximum size of the output image grid.
        max_subplots: Maximum number of subplots in the image grid.
        save: Whether to save the plotted image grid to a file.
        conf_thres: Confidence threshold for displaying detections.

    Returns:
        np.ndarray: Plotted image grid as a numpy array if save is False, None otherwise.

    Note:
        This function supports both tensor and numpy array inputs. It will automatically
        convert tensor inputs to numpy arrays for processing.
    """
    if isinstance(images, torch.Tensor):
        images = images.cpu().float().numpy()
    if isinstance(cls, torch.Tensor):
        cls = cls.cpu().numpy()
    if isinstance(bboxes, torch.Tensor):
        bboxes = bboxes.cpu().numpy()
    if isinstance(masks, torch.Tensor):
        masks = masks.cpu().numpy().astype(int)
    if isinstance(kpts, torch.Tensor):
        kpts = kpts.cpu().numpy()
    if isinstance(batch_idx, torch.Tensor):
        batch_idx = batch_idx.cpu().numpy()

    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs**0.5)  # number of subplots (square)
    if np.max(images[0]) <= 1:
        images *= 255  # de-normalise (optional)

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
    for i in range(bs):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0)

    # Resize (optional)
    scale = max_size / ns / max(h, w)
    if scale < 1:
        h = math.ceil(scale * h)
        w = math.ceil(scale * w)
        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))

    # Annotate
    fs = int((h + w) * ns * 0.01)  # font size
    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
    for i in range(bs):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
        if paths:
            annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
        if len(cls) > 0:
            idx = batch_idx == i
            classes = cls[idx].astype("int")
            labels = confs is None

            if len(bboxes):
                boxes = bboxes[idx]
                conf = confs[idx] if confs is not None else None  # check for confidence presence (label vs pred)
                if len(boxes):
                    if boxes[:, :4].max() <= 1.1:  # if normalized with tolerance 0.1
                        boxes[..., [0, 2]] *= w  # scale to pixels
                        boxes[..., [1, 3]] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        boxes[..., :4] *= scale
                boxes[..., 0] += x
                boxes[..., 1] += y
                is_obb = boxes.shape[-1] == 5  # xywhr
                boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
                for j, box in enumerate(boxes.astype(np.int64).tolist()):
                    c = classes[j]
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    if labels or conf[j] > conf_thres:
                        label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
                        annotator.box_label(box, label, color=color, rotated=is_obb)

            elif len(classes):
                for c in classes:
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    annotator.text((x, y), f"{c}", txt_color=color, box_style=True)

            # Plot keypoints
            if len(kpts):
                kpts_ = kpts[idx].copy()
                if len(kpts_):
                    if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01:  # if normalized with tolerance .01
                        kpts_[..., 0] *= w  # scale to pixels
                        kpts_[..., 1] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        kpts_ *= scale
                kpts_[..., 0] += x
                kpts_[..., 1] += y
                for j in range(len(kpts_)):
                    if labels or conf[j] > conf_thres:
                        annotator.kpts(kpts_[j], conf_thres=conf_thres)

            # Plot masks
            if len(masks):
                if idx.shape[0] == masks.shape[0]:  # overlap_masks=False
                    image_masks = masks[idx]
                else:  # overlap_masks=True
                    image_masks = masks[[i]]  # (1, 640, 640)
                    nl = idx.sum()
                    index = np.arange(nl).reshape((nl, 1, 1)) + 1
                    image_masks = np.repeat(image_masks, nl, axis=0)
                    image_masks = np.where(image_masks == index, 1.0, 0.0)

                im = np.asarray(annotator.im).copy()
                for j in range(len(image_masks)):
                    if labels or conf[j] > conf_thres:
                        color = colors(classes[j])
                        mh, mw = image_masks[j].shape
                        if mh != h or mw != w:
                            mask = image_masks[j].astype(np.uint8)
                            mask = cv2.resize(mask, (w, h))
                            mask = mask.astype(bool)
                        else:
                            mask = image_masks[j].astype(bool)
                        with contextlib.suppress(Exception):
                            im[y : y + h, x : x + w, :][mask] = (
                                im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
                            )
                annotator.fromarray(im)
    if not save:
        return np.asarray(annotator.im)
    annotator.im.save(fname)  # save
    if on_plot:
        on_plot(fname)


@plt_settings()
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None):
    """
    Plot training results from a results CSV file. The function supports various types of data including segmentation,
    pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.

    Args:
        file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'.
        dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''.
        segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False.
        pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False.
        classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False.
        on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
            Defaults to None.

    Example:
        ```python
        from ultralytics.utils.plotting import plot_results

        plot_results("path/to/results.csv", segment=True)
        ```
    """
    import pandas as pd  # scope for faster 'import ultralytics'
    from scipy.ndimage import gaussian_filter1d

    save_dir = Path(file).parent if file else Path(dir)
    if classify:
        fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
        index = [1, 4, 2, 3]
    elif segment:
        fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
    elif pose:
        fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
    else:
        fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
    ax = ax.ravel()
    files = list(save_dir.glob("results*.csv"))
    assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
    for f in files:
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate(index):
                y = data.values[:, j].astype("float")
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8)  # actual results
                ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2)  # smoothing line
                ax[i].set_title(s[j], fontsize=12)
                # if j in {8, 9, 10}:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            LOGGER.warning(f"WARNING: Plotting error for {f}: {e}")
    ax[1].legend()
    fname = save_dir / "results.png"
    fig.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)


def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"):
    """
    Plots a scatter plot with points colored based on a 2D histogram.

    Args:
        v (array-like): Values for the x-axis.
        f (array-like): Values for the y-axis.
        bins (int, optional): Number of bins for the histogram. Defaults to 20.
        cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'.
        alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8.
        edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'.

    Examples:
        >>> v = np.random.rand(100)
        >>> f = np.random.rand(100)
        >>> plt_color_scatter(v, f)
    """
    # Calculate 2D histogram and corresponding colors
    hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
    colors = [
        hist[
            min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
            min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1),
        ]
        for i in range(len(v))
    ]

    # Scatter plot
    plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)


def plot_tune_results(csv_file="tune_results.csv"):
    """
    Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key
    in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.

    Args:
        csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'.

    Examples:
        >>> plot_tune_results("path/to/tune_results.csv")
    """
    import pandas as pd  # scope for faster 'import ultralytics'
    from scipy.ndimage import gaussian_filter1d

    def _save_one_file(file):
        """Save one matplotlib plot to 'file'."""
        plt.savefig(file, dpi=200)
        plt.close()
        LOGGER.info(f"Saved {file}")

    # Scatter plots for each hyperparameter
    csv_file = Path(csv_file)
    data = pd.read_csv(csv_file)
    num_metrics_columns = 1
    keys = [x.strip() for x in data.columns][num_metrics_columns:]
    x = data.values
    fitness = x[:, 0]  # fitness
    j = np.argmax(fitness)  # max fitness index
    n = math.ceil(len(keys) ** 0.5)  # columns and rows in plot
    plt.figure(figsize=(10, 10), tight_layout=True)
    for i, k in enumerate(keys):
        v = x[:, i + num_metrics_columns]
        mu = v[j]  # best single result
        plt.subplot(n, n, i + 1)
        plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none")
        plt.plot(mu, fitness.max(), "k+", markersize=15)
        plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9})  # limit to 40 characters
        plt.tick_params(axis="both", labelsize=8)  # Set axis label size to 8
        if i % n != 0:
            plt.yticks([])
    _save_one_file(csv_file.with_name("tune_scatter_plots.png"))

    # Fitness vs iteration
    x = range(1, len(fitness) + 1)
    plt.figure(figsize=(10, 6), tight_layout=True)
    plt.plot(x, fitness, marker="o", linestyle="none", label="fitness")
    plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2)  # smoothing line
    plt.title("Fitness vs Iteration")
    plt.xlabel("Iteration")
    plt.ylabel("Fitness")
    plt.grid(True)
    plt.legend()
    _save_one_file(csv_file.with_name("tune_fitness.png"))


def output_to_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]


def output_to_rotated_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, box, angle, conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]


def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
    """
    Visualize feature maps of a given model module during inference.

    Args:
        x (torch.Tensor): Features to be visualized.
        module_type (str): Module type.
        stage (int): Module stage within the model.
        n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
        save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
    """
    for m in {"Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"}:  # all model heads
        if m in module_type:
            return
    if isinstance(x, torch.Tensor):
        _, channels, height, width = x.shape  # batch, channels, height, width
        if height > 1 and width > 1:
            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename

            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
            n = min(n, channels)  # number of plots
            _, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
            ax = ax.ravel()
            plt.subplots_adjust(wspace=0.05, hspace=0.05)
            for i in range(n):
                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
                ax[i].axis("off")

            LOGGER.info(f"Saving {f}... ({n}/{channels})")
            plt.savefig(f, dpi=300, bbox_inches="tight")
            plt.close()
            np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy())  # npy save

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2143793.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机毕业设计选题推荐-共享图书管理系统-小程序/App

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

【北京迅为】《STM32MP157开发板使用手册》- 第三十一章Cortex-M4窗口看门狗实验

iTOP-STM32MP157开发板采用ST推出的双核cortex-A7单核cortex-M4异构处理器&#xff0c;既可用Linux、又可以用于STM32单片机开发。开发板采用核心板底板结构&#xff0c;主频650M、1G内存、8G存储&#xff0c;核心板采用工业级板对板连接器&#xff0c;高可靠&#xff0c;牢固耐…

国外SIM卡有信号无法连接,如何解决?

&#x1f3c6;本文收录于《CSDN问答解惑-专业版》专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收…

[Java]SpringBoot能力进阶

配置优先级 SpringBoot中支持三种格式的配置文件 优先级: application.properties文件 > application.yml文件 > application.yaml文件 SpringBoot除了通过配置文件配置属性, 还支持Java系统属性和命令行参数的方式 进行属性配置 1.在IDEA中配置java系统属性和命令行参…

19、Python如何读写excel文件

在数据处理和分析时&#xff0c;经常使用Excel&#xff0c;而手动操作Excel可能非常繁琐和耗时。Python提供了许多强大的库和工具&#xff0c;可以方便地操作Excel文件。 在Python标准库中是不支持Excel读写的&#xff0c;我们要安装第三方库来实现。 在Python中操作Excel有多…

设计一个高质量的API接口:提升应用性能的关键步骤

在当今的软件开发世界中&#xff0c;API&#xff08;应用程序编程接口&#xff09;接口扮演着至关重要的角色。一个设计精良的API不仅能够提高开发效率&#xff0c;还能提升用户体验&#xff0c;并确保系统的可扩展性和安全性。本文将探讨如何设计一个高质量的API接口&#xff…

Golang | Leetcode Golang题解之第412题Fizz Buzz

题目&#xff1a; 题解&#xff1a; func fizzBuzz(n int) (ans []string) {for i : 1; i < n; i {sb : &strings.Builder{}if i%3 0 {sb.WriteString("Fizz")}if i%5 0 {sb.WriteString("Buzz")}if sb.Len() 0 {sb.WriteString(strconv.Itoa(i…

Davinci 大数据可视化分析

Davinci 大数据可视化分析 一、Davinci 架构设计1.1 Davinci定义1.2 Davinci 应用场景 二、Davinci 安装部署2.1 部署规划2.2 前置环境准备2.3 Davinci部署2.3.1 物料准备2.3.2 安装配置 2.4 环境变量配置2.5 初始化数据库2.5.1 创建数据库及用户 2.5.2 建表2.6 初始化配置 三、…

开源免费的NAS系统-TrueNAS CORE搭建和使用(保姆级教程)

TrueNAS CORE说明 TrueNASCORE(以前称为 FreeNAS)是世界上最受欢迎的存储操作系统,因为它使您能够构建自己的专业级存储系统,用于各种数据密集型应用程序,而无需任何软件成本。只需将其安装到硬件或虚拟机上,即可体验开源存储的真正存储自由。 TrueNAS提供了CORE和Ente…

如何用python构建简单神经网络?

今天&#xff0c;我们将运用Python来搭建一个简单的神经网络模型&#xff01;并深入浅出地探索其背后的运作原理。 多输入 提及神经网络时&#xff0c;我们可以将其视为一个高度灵活的函数来理解和应用。 为了做出准确的预测&#xff0c;我们需要构建能够同时组合多个输入的…

吸浮毛宠物空气净化器推荐,希喂、小米、有哈宠物空气净化器测评

养猫需谨慎&#xff0c;不然就要做猫奴一辈子啦&#xff01;上次堂妹来我家住几天&#xff0c;刚开始还担心和猫处不来&#xff0c;不敢去摸它&#xff0c;走的时候已经约好下次来看它的时间&#xff0c;笑死我了。毕竟猫咪这么可爱&#xff0c;很少有人可以抵抗它的魅力。 这不…

Zabbix 2024 中国峰会在上海举办,Databuff 携最业界领先研发成果重磅亮相

9月13日&#xff0c;Zabbix中国峰会在上海圆满结束。会上共进行了18场技术演讲&#xff0c;共有超过500人参加了本次盛会。 大会开始&#xff0c;Zabbix创始人Alexei Vladishev介绍了Zabbix7.0新功能以及未来的发展蓝图。 随后&#xff0c;乘云数字CEO向成钢分享了《如何打造开…

JVM 调优篇7 调优案例4- 线程溢出

一 线程溢出 1.1 报错信息 每个 Java 线程都需要占用一定的内存空间&#xff0c;当 JVM 向底层操作系统请求创建一个新的 native 线程时&#xff0c;如果没有足够的资源分配就会报此类错误。报错信息&#xff1a;java.lang.outofmemoryError:unable to create new Native Thr…

集群软件在linux上的安装

前置准备 为了保证各个服务器之间的正常通信&#xff0c;要完成集群化环境的前置准备&#xff0c;包括创建多台虚拟机&#xff0c;配置主机名映射&#xff0c;SSH免密登录等等。 配置多个虚拟机 配置多台Linux虚拟机 安装集群化软件&#xff0c;首要条件就是要有多台Linux服务…

web基础—dvwa靶场(四)​File Inclusion

File Inclusion(文件包含) 有些 web 应用程序允许用户指定直接文件流的输入&#xff0c;或允许用户将文件上载到服务器。稍后 web 应用程序访问 web 应用程序上下文中用户提供的输入。通过这样种操作&#xff0c;web 应用程序允许恶意文件执行。 如果选择要包含的文件是目标计…

【系统方案】智慧园区数字园区整体解决全套方案(PPT,Word原件等)

智慧园区建设要点可归纳为以下几点&#xff1a; 基础设施建设&#xff1a;构建高速、稳定的网络基础设施&#xff0c;部署物联网设备&#xff0c;实现园区内设备的互联互通&#xff0c;为智慧化应用提供基础支撑。 数据平台建设&#xff1a;建立统一的数据中心&#xff0c;整合…

Linux中安装maven

Linux中安装maven 1.下载2.安装3.配置环境变量4.maven相关配置 1.下载 下载地址&#xff1a;https://maven.apache.org/download.cgi 2.安装 指定位置上传压缩包&#xff1a; 解压&#xff1a; tar -zxvf apache-maven-3.9.5-bin.tar.gz修改解压缩后的文件名: mv apac…

c++刷题

17.电话号码的组合 来源于题解思路&#xff1a; 继承 CC14 KiKi设计类继承 #include <iostream> #include <memory> using namespace std; class Shape{ private:int x;int y; };class Rectangle:public Shape { public:Rectangle(int length,int width):Shape…

从AI应用排行榜选择AI产品(9月)

2024年9月13日&#xff0c;OpenAI公司宣布推出其全新的AI模型&#xff1a;o1&#xff0c;在数学、编程和科学问题的解决处理能力上取得了显著进步。该模型通过自我对弈强化学习&#xff08;Self-play RL&#xff09;和思维链&#xff08;Chain of Thought, CoT&#xff09;技术…

[C语言]连子棋游戏

文章目录 一、前言二、游戏思路三、游戏方法1、初始化2、判断胜利3、交互4、电脑下棋 四、核心方法说明1、初始化游戏2、销毁棋盘3、显示游戏4、电脑下棋5、用户下棋6、判断游戏状态7、游戏交互 五、游戏效果展示与源码分享1、游戏效果2、源代码 一、前言 对于指针和数组理解尚…