面向对象程序设计(C++)———多态

news2024/11/15 6:47:54

1.认识多态

多态(polymorphism)的概念:通俗来说,就是多种形态。多态分为编译时多态(静态多态)和运⾏时多态(动态多态),这⾥我们重点讲运⾏时多态,编译时多态(静态多态)和运⾏时多态(动态多态)。编译时 多态(静态多态)主要就是我们前⾯讲的函数重载和函数模板,他们传不同类型的参数就可以调⽤不同的函数,通过参数不同达到多种形态,之所以叫编译时多态,是因为他们实参传给形参的参数匹配是在编译时完成的,我们把编译时⼀般归为静态,运⾏时归为动态。 运⾏时多态,具体点就是去完成某个⾏为(函数),可以传不同的对象就会完成不同的⾏为,就达到多种形态。⽐如买票这个⾏为,当普通⼈买票时,是全价买票;学⽣买票是优惠买票(5折或75折);军⼈买票时是优先买票。

2.多态的定义及实现 

2.1实现多态的重要条件

• 必须指针或者引⽤调⽤虚函数

• 被调⽤的函数必须是虚函数

说明:要实现多态效果,第⼀必须是基类的指针或引⽤,因为只有基类的指针或引⽤才能既指向派⽣类对象又指向基类;第⼆派⽣类必须对基类的虚函数重写/覆盖,重写或者覆盖了,派⽣类才能有不同的函数,多态的不同形态效果才能达到,并且派生类与派生类之间也可以实现多态

class Parent
{
public:
	void virtual Show()
	{
		cout << "基类" << endl;
	}
};

class Child : public Parent
{
public:
	void virtual Show()
	{
		cout << "派生类" << endl;
	}
};

//引用
//void Display(Parent& p)
//{
//	p.Show();
//}
// 
//指针
void Display(Parent* p)
{
	p->Show();
}


int main()
{
	Parent _parent;
	Child _child;

	//引用
	//Display(_parent);
	//Display(_child);

	//指针
	Display(&_parent);
	Display(&_child);

	return 0;
}

2.2 虚函数

类成员函数前⾯加virtual修饰,那么这个成员函数被称为虚函数。注意⾮成员函数不能加virtual修饰

2.2.1 虚函数的重写/覆盖

派⽣类中有⼀个跟基类完全相同的虚函数(即派⽣类虚函数与基类虚函数的返回值类型、函数名字、参数列表完全相同),参数列表的数据类型相同即可,参数名可以不同,则称派⽣类的虚函数重写了基类的虚函数

注意:在重写基类虚函数时,派⽣类的虚函数在不加virtual关键字时,虽然也可以构成重写(因为继承后基类的虚函数被继承下来了在派⽣类依旧保持虚函数属性),但是该种写法不是很规范,不建议这样使⽤,不过在考试选择题中,经常会故意买这个坑,让你判断是否构成多态。并且,只要基类中定义了虚函数,所有派生类都可以不写virtual,但是不建议这样

class Parent
{
public:
	void virtual Show()
	{
		cout << "基类" << endl;
	}
};

class Child : public Parent
{
public:
	void virtual Show()
	{
		cout << "派生类" << endl;
	}
};

//引用
//void Display(Parent& p)
//{
//	p.Show();
//}
// 
//指针
void Display(Parent* p)
{
	p->Show();
}


int main()
{
	Parent _parent;
	Child _child;

	//引用
	//Display(_parent);
	//Display(_child);

	//指针
	Display(&_parent);
	Display(&_child);

	return 0;
}

2.2.2关于多态的面试难题 

这里引出一个新的概念就是,多态重写时绝不重新定义继承而来的缺省值

本题的答案是:B->1

解析:这里p->test()就已经构成了多态,也就是说B类中的fun()已经重写了A中的fun()函数,那么此时调用的结果就是B->,那么之后的值如何判断呢,根据我们上面引出的概念,多态重写时绝不重新定义继承而来的缺省值,也就是说此时的val仍然是A类中的缺省值1,所以最后的结果就是B->1

这里还有一个知识点就是当使用p->fun()时由于传的指针是派生类的指针,于是不构成多态,所以直接调用的是B类中的fun()函数,最后结果是B->0

//面试难题
class A

{
public:
	virtual void func(int val = 1) { std::cout << "A->" << val << std::endl; }
	virtual void test() { func(); }
};

class B : public A
{
public:
	void func(int val = 0) { std::cout << "B->" << val << std::endl; }
};


int main(int argc, char* argv[])
{
	B* p = new B;
	p->test();
    //p->fun();
  
	return 0;
}

2.2.3常见的虚函数问题

协变 

派⽣类重写基类虚函数时,与基类虚函数返回值类型不同。即基类虚函数返回基类对象的指针或者引⽤,派⽣类虚函数返回派⽣类对象的指针或者引⽤时,称为协变

class A {};
class B : public A {};

class Person {

public:
	virtual A* BuyTicket()
	{
		cout << "买票-全价" << endl;
		return nullptr;
	}
};

class Student : public Person {

public:
	virtual B* BuyTicket()
	{
		cout << "买票-打折" << endl;
		return nullptr;
	}
};

void Func(Person* ptr)
{
	ptr->BuyTicket();
}

int main()
{
	Person ps;
	Student st;
	Func(&ps);
	Func(&st);

	return 0;
}

析构函数重写

基类的析构函数为虚函数,此时派⽣类析构函数只要定义,⽆论是否加virtual关键字,都与基类的析 构函数构成重写,虽然基类与派⽣类析构函数名字不同看起来不符合重写的规则,实际上编译器对析 构函数的名称做了特殊处理,编译后析构函数的名称统⼀处理成destructor,所以基类的析构函数加了vialtual修饰,派⽣类的析构函数就构成重写。下⾯的代码我们可以看到,如果~A(),不加virtual,那么delete p2时只调⽤的A的析构函数,没有调⽤ B的析构函数,就会导致内存泄漏问题,因为~B()中在释放资源

注意:这个问题⾯试中经常考察,⼤家⼀定要结合类似下⾯的样例才能讲清楚,为什么基类中的析构 函数建议设计为虚函数 

//析构的重写
class A
{
public:
	virtual ~A()
	{
		cout << "~A()" << endl;
	}
};

class B :public A
{
public:
	//构成重写
	~B()
	{
		cout << "~B()" << endl;
	}
private:
	int* b = new int[10];
};

int main()
{
	//传的均是基类的指针,构成多态
	A* p1 = new A;
	A* p2 = new B;

	//基类传递基类的析构
	delete p1;
	//子类则传递子类的析构,最后析构完子类再析构父类
	delete p2;

	return 0;
}

2.2.4override与final关键字 

override:检查是否重写 

//override检查是否重写
class Car {

public:
	virtual void Dirve()
	{}
};

class Benz :public Car {

public:
	virtual void Drive() override { cout << "Benz-舒适" << endl; }
};

int main()
{
	return 0;
}

final:避免基类的虚函数被重写 

class Car
{
public:
	virtual void Drive() final {}
};

class Benz :public Car
{
public:
	virtual void Drive() { cout << "Benz-舒适" << endl; }
};

int main()
{

	return 0;
}

 2.2.5重载/重写/隐藏的对比

3.纯虚函数与抽象类 

在虚函数的后⾯写上=0,则这个函数为纯虚函数,纯虚函数不需要定义实现(实现没啥意义因为要被派⽣类重写,但是语法上可以实现),只要声明即可。包含纯虚函数的类叫做抽象类,抽象类不能实例化出对象,如果派⽣类继承后不重写纯虚函数,那么派⽣类也是抽象类。纯虚函数某种程度上强制了派⽣类重写虚函数,因为不重写实例化不出对象

//纯虚函数与抽象类
class Car

{

public:
	virtual void Drive() = 0;
};

class Benz :public Car
{

public:
	virtual void Drive()
	{
		cout << "Benz-舒适" << endl;
	}
};
class BMW :public Car
{

public:
	virtual void Drive()
	{
		cout << "BMW-操控" << endl;
	}
};

int main()
{
	// 编译报错:error C2259: “Car”: ⽆法实例化抽象类 
	//Car car;

	//虽然抽象类无法实例化对象但是可以使用指针调用子类的虚函数
	Car* pBenz = new Benz;
	pBenz->Drive();

	Car* pBMW = new BMW;
	pBMW->Drive();


	return 0;
}

4.多态的原理 

4.1虚函数表指针

虚函数表的实质就是一个函数指针数组,也就是一个数组,里面存放的都是虚函数的指针 

下列代码在32(x86)为环境下的运行结果是: 12(byte)

解析:除了_b和_ch成员,还多⼀个_vfptr放在对象的前⾯(注意有些平台可能会放到对象的最后⾯,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代表function)。⼀个含有虚函数的类中都⾄少都有⼀个虚函数表指针,因为⼀个类所有虚函数的地址要被放到这个类对象的虚函数表中,虚函数表也简称虚表,这时根据内存对齐原则指针类型占4字节,32位下最大对齐数为8,取二者较小值也就是4,整数类型占4字节,char类型占1字节,内存对齐4字节后总的内存是4+4+4=12byte

class Base
{
public:
	virtual void Func1()
	{
		cout << "Func1()" << endl;
	}

protected:
	int _b = 1;
	char _ch = 'x';
};

int main()
{
	Base b;
	cout << sizeof(b) << endl;

	return 0;
}

4.2多态的底层实现

从底层的⻆度Func函数中ptr->BuyTicket(),是如何作为ptr指向Person对象调用Person::BuyTicket, ptr指向Student对象调⽤Student::BuyTicket的呢?通过下图我们可以看到,满⾜多态条件后,底层不再是编译时通过调⽤对象确定函数的地址,⽽是运⾏时到指向的对象的虚表中确定对应的虚函数的 地址,这样就实现了指针或引⽤指向基类就调⽤基类的虚函数,指向派⽣类就调⽤派⽣类对应的虚函数。第⼀张图,ptr指向的Person对象,调⽤的是Person的虚函数;第⼆张图,ptr指向的Student对象,调⽤的是Student的虚函数 

在使用时,指向哪个对象就调用该对象,运行时到指向对象的虚函数表找到对应虚函数的地址后访问改地址就完成了一次调用 

//多态的底层实现
class Person {

public:
	virtual void BuyTicket() { cout << "买票-全价" << endl; }
protected:
	string _name;
};

class Student : public Person {

public:
	virtual void BuyTicket() { cout << "买票-打折" << endl; }
protected:
	int _id;
};

class Soldier : public Person {

public:
	virtual void BuyTicket() { cout << "买票-优先" << endl; }
protected:
	string _codename;
};

void Func(Person* ptr)
{
	// 这⾥可以看到虽然都是Person指针Ptr在调⽤BuyTicket 
	// 但是跟ptr没关系,⽽是由ptr指向的对象决定的。 
	ptr->BuyTicket();
}

int main()
{
	// 其次多态不仅仅发⽣在派⽣类对象之间,多个派⽣类继承基类,重写虚函数后 
	// 多态也会发⽣在多个派⽣类之间。 
	Person ps;
	Student st;
	Soldier sr;
	Func(&ps);
	Func(&st);
	Func(&sr);

	return 0;
}

4.3动态绑定与静态绑定

• 对不满⾜多态条件(指针或者引⽤+调⽤虚函数)的函数调⽤是在编译时绑定,也就是编译时确定调⽤ 函数的地址,叫做静态绑定

• 满⾜多态条件的函数调⽤是在运⾏时绑定,也就是在运⾏时到指向对象的虚函数表中找到调⽤函数 的地址,也就做动态绑定

// ptr是指针+BuyTicket是虚函数满⾜多态条件。 
 // 这⾥就是动态绑定,编译在运⾏时到ptr指向对象的虚函数表中确定调⽤函数地址 
 ptr->BuyTicket();

00EF2001 mov eax,dword ptr [ptr] 

00EF2004 mov edx,dword ptr [eax] 

00EF2006 mov esi,esp 

00EF2008 mov ecx,dword ptr [ptr] 

00EF200B mov eax,dword ptr [edx] 

00EF200D call eax
 // BuyTicket不是虚函数,不满⾜多态条件。 
 // 这⾥就是静态绑定,编译器直接确定调⽤函数地址 
 ptr->BuyTicket();

00EA2C91 mov ecx,dword ptr [ptr] 

00EA2C94 call Student::Student (0EA153Ch)

4.4虚函数表

• 基类对象的虚函数表中存放基类所有虚函数的地址。同一类型的对象虚函数表相同

• 派⽣类由两部分构成,继承下来的基类和⾃⼰的成员,⼀般情况下,继承下来的基类中有虚函数表指针,⾃⼰就不会再⽣成虚函数表指针。但是要注意的这⾥继承下来的基类部分虚函数表指针和基类对象的虚函数表指针不是同⼀个,因为派生类重写了虚函数,就像基类对象的成员和派⽣类对象中的基类对象成员也独⽴的。

• 派⽣类中重写的基类的虚函数,派⽣类的虚函数表中对应的虚函数就会被覆盖成派⽣类重写的虚函数地址

• 派⽣类的虚函数表中包含,基类的虚函数地址,派⽣类重写的虚函数地址,派⽣类⾃⼰的虚函数地址三个部分。

虚函数表本质是⼀个存虚函数指针的指针数组,⼀般情况这个数组最后⾯放了⼀个0x00000000标记。(这个C++并没有进⾏规定,各个编译器⾃⾏定义的,vs系列编译器会再后⾯放个0x00000000 标记,g++系列编译不会放)

• 虚函数存在哪的?虚函数和普通函数⼀样的,编译好后是⼀段指令,都是存在代码段的,只是虚函数的地址⼜存到了虚表中。

• 虚函数表存在哪的?这个问题严格说并没有标准答案C++标准并没有规定,vs下是存在代码段(常量区)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2142733.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一分钟掌握 Excel VBA 技巧,轻松批量生成工资条,提高工作效率!

可能大家忽视了一点&#xff0c;Excel是我们日常办公中使用最多的工具&#xff0c;所以&#xff0c;学好Excel并加以运用&#xff0c;一定能提升你的工作效率&#xff0c;比如Excel VBA可以用代码实现自动化办公&#xff0c;下面举一个Excel VBA批量生成工资条的办公小案例。 …

swagger新玩法 - 让你API接口开发原地起飞

作为Java后台接口开发人员&#xff0c;无论对对接方是前端还是第三方&#xff0c;很多时候我们在文档和代码两头都需要费心&#xff0c;而做到自动的同步将会非常省心。本教程将带你领略下如何借助swagger官方提供的新玩法&#xff0c;让你的API接口开发原地起飞&#xff0c;甚…

34.贪心算法1

0.贪心算法 1.柠檬水找零&#xff08;easy&#xff09; . - 力扣&#xff08;LeetCode&#xff09; 题目解析 算法原理 代码 class Solution {public boolean lemonadeChange(int[] bills) {int five 0, ten 0;for (int x : bills) {if (x 5) // 5 元&#xff1a;直接收下…

4. Python之运算符

一. Python运算符 常用的运算符有&#xff1a;算述运算符&#xff0c;赋值运算符&#xff0c;比较运算述&#xff0c;逻辑运算符&#xff0c;位运算符等等。 1. 算述运算符 用于处理四则运算的符号&#xff0c;主要有&#xff1a; 运算符描述加法-减法*乘法/除法//整除%取余…

嵌入式DCMI摄像头功能调试方法

STM32F407芯片带有DCMI接口,在我们的核心板上已经将接口用18PIN的FPC座子引出。 这个接口可以接我们的OV2640接口。 本节我们开始调试摄像头。 16.1. DCMI DCMI接口是ST自己定义的接口。 Digital camera interface (DCMI),是意法半导体公司产品STM32F4xx系列芯片的快速摄像头…

【JavaEE初阶】多线程(5 单例模式 \ 阻塞队列)

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 实例1: 单例模式 饿汉模式 懒汉模式 实例2:阻塞队列 生产者消费者模型 优点 ​编辑 代价 简单实现一个生产者消费者模型 Java标准库中的阻塞队列 ​编辑 模拟实现一…

面试官问:你如何看待加班?

面试官问&#xff1a;你如何看待加班&#xff1f; 面试官问&#xff1a;你如何看待加班&#xff1f;这类问题是比较常见的&#xff0c;出现频率相当高。有些同学看到这样的问题&#xff0c;就会断定这家公司估计是经常加班的&#xff0c;绝对的不能去&#xff01;&#xff01;…

通信工程学习:什么是PON无缘光纤网络

PON&#xff1a;无源光纤网络 PON&#xff08;Passive Optical Network&#xff0c;无源光纤网络&#xff09;是一种采用光分路器等无源光器件进行信号传输和分配的光纤接入技术。它利用光纤作为传输媒介&#xff0c;通过无源设备将光信号从中心局&#xff08;如光线路终端OLT&…

中秋节特别游戏:给玉兔投喂月饼

&#x1f5bc;️ 效果展示 &#x1f4dc; 游戏背景 在中秋这个充满诗意的节日里&#xff0c;玉兔因为贪玩被赶下人间。在这个温柔的夜晚&#xff0c;我们希望通过一个小游戏&#xff0c;让玉兔感受到人间的温暖和关怀。&#x1f430;&#x1f319; &#x1f3ae; 游戏设计 人…

太阳能光伏板航拍红外图像缺陷分类数据集

太阳能光伏板航拍红外图像缺陷分类数据集 一、数据集简介 太阳能光伏板的性能直接影响到光伏发电系统的效率和可靠性。随着无人机和红外成像技术的发展&#xff0c;通过航拍红外图像对光伏板进行缺陷检测已成为一种高效且准确的方法。本数据集包含11种不同的缺陷分类&#xf…

【CPP】模板(后篇)

目录 13.1 非类型模板参数13.2 函数模板的特化13.3 类模板的特化13.4 模板的分离编译 这里是oldking呐呐,感谢阅读口牙!先赞后看,养成习惯! 个人主页:oldking呐呐 专栏主页:深入CPP语法口牙 13.1 非类型模板参数 顾名思义,非类型模板参数就是一个模板的参数,只不过不是类型,而…

第二十六篇——九地篇:九种形势的应对之道

目录 一、背景介绍二、思路&方案三、过程1.思维导图2.文章中经典的句子理解3.学习之后对于投资市场的理解4.通过这篇文章结合我知道的东西我能想到什么&#xff1f; 四、总结五、升华 一、背景介绍 地势的维度重新阐述了懂得人心的重要性&#xff0c;道久其归一为为别人。…

个人随想-gpt-o1大模型中推理链的一个落地实现

​首先祝大家中秋节快乐。 最近openai又推出了新的模型openai o1​还有它的mini版。官网的介绍&#xff0c;就是它的推理能力很强&#xff0c;比gpt-4o​有很大的提升。 最近也跟同行在聊这个o1&#xff0c;​看看落地方面有哪些可行性。在我们自己的实验上&#xff0c;把o1用…

Python画笔案例-052 绘制彩色递归六边形

1、绘制彩色递归六边形 通过 python 的turtle 库绘制 彩色递归六边形&#xff0c;如下图&#xff1a; 2、实现代码 绘制彩色递归六边形&#xff0c;以下为实现代码&#xff1a; """彩色递归六边形.py """ import turtledef draw_circle(radius,…

【自动化测试】移动app的分层测试以及自动遍历的基本概念

引言 移动应用的分层测试是一种系统化的测试方法&#xff0c;它将测试过程分解为不同的层次&#xff0c;以确保应用在每个层面上都符合设计要求和用户期望 文章目录 引言一、移动app的分层测试1.1 单元测试&#xff08;Unit Testing&#xff09;1.2 集成测试&#xff08;Integr…

甲骨文创始人埃里森:人工智能终有一天会追踪你的一举一动

9月17日消息&#xff0c;据外电报道&#xff0c;甲骨文创始人拉里埃里森在甲骨文财务分析师会议上表示&#xff0c;他预计人工智能有一天将为大规模执法监控网络提供动力。“我们将进行监督。”他说。“每一位警察都将随时受到监督&#xff0c;如果有问题&#xff0c;人工智能会…

人工智能辅助汽车造型设计

随着科技的不断进步&#xff0c;人工智能&#xff08;AI&#xff09;在各个领域的应用越来越广泛&#xff0c;汽车设计行业也不例外。尤其在车辆外观造型设计中&#xff0c;AI正在成为设计师的重要助手&#xff0c;通过提供强大的工具和独特的创意方式&#xff0c;革新了传统设…

算法之搜索--最长公共子序列LCS

最长公共子序列&#xff08;longest common sequence&#xff09;:可以不连续 最长公共子串&#xff08;longest common substring&#xff09;&#xff1a;连续 demo for (int i 1;i<lena;i){for (int j 1;j<lenb;j){if(a[i-1]b[j-1]){dp[i][j]dp[i-1][j-1]1;}el…

神奇的Serializable接口,为什么有时候网络传输不用实现Serializable,有时候又需要?

大家好&#xff0c;这里是小奏,觉得文章不错可以关注公众号小奏技术 背景 其他大家在初学java的时候肯定是接触过Serializable接口的&#xff0c;这个接口是一个标记接口&#xff0c;没有任何方法&#xff0c;只是一个标记&#xff0c;用来标记一个类可以被序列化&#xff0c;…

深入解析代理模式:静态代理、JDK 动态代理和 CGLIB 的全方位对比!

代理模式&#xff08;Proxy Pattern&#xff09;是一种结构型设计模式&#xff0c;它提供了对象的替身&#xff0c;即代理对象来控制对实际对象的访问。通过代理对象&#xff0c;可以在不修改目标对象的情况下&#xff0c;扩展或控制其功能。例如&#xff0c;代理模式可以用于延…