1. 新建一个Conda虚拟环境
conda create -n mamba python=3.10
2. 进入该环境
conda activate mamba
3. 安装torch(建议2.3.1版本)以及相应的 torchvison、torchaudio
直接进入pytorch离线包下载网址,在里面寻找对应的pytorch以及torchvison、torchaudio
CSDN资源
下载完成后,进入这些文件的目录下,直接使用下面三个指令进行安装即可
pip install torch-2.3.1+cu118-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.18.1+cu118-cp310-cp310-linux_x86_64.whl
pip install torchaudio-2.3.1+cu118-cp310-cp310-linux_x86_64.whl
4. 安装triton和transformers库
pip install triton==2.3.1
pip install transformers==4.43.3
5. 安装完这些我们最基本Pytorch环境以及配置完成,接下来就是Mamba所需的一些依赖了,由于Mamba需要底层的C++进行编译,所以还需要手动安装一下cuda-nvcc这个库,直接使用conda命令即可
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
6. 最后就是下载最重要的 causal-conv1d 和mamba-ssm库。在这里我们同样选择离线安装的方式,来避免大量奇葩的编译bug。首先进入下面各自的github网址种进行下载对应版本
causal-conv1d —— 1.4.0
mamba-ssm —— 2.2.2
和安装pytorch一样,进入下载的.whl文件所在文件夹,直接使用以下指令进行安装
pip install causal_conv1d-1.4.0+cu118torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install mamba_ssm-2.2.2+cu118torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
7. 安装好环境后,验证一下Mamba块能否成功运行,直接复制下面代码保存问mamba2_test.py,并运行
# Copyright (c) 2024, Tri Dao, Albert Gu.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
try:
from causal_conv1d import causal_conv1d_fn
except ImportError:
causal_conv1d_fn = None
try:
from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated, LayerNorm
except ImportError:
RMSNormGated, LayerNorm = None, None
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
from mamba_ssm.ops.triton.ssd_combined import mamba_split_conv1d_scan_combined
class Mamba2Simple(nn.Module):
def __init__(
self,
d_model,
d_state=128,
d_conv=4,
conv_init=None,
expand=2,
headdim=64,
ngroups=1,
A_init_range=(1, 16),
dt_min=0.001,
dt_max=0.1,
dt_init_floor=1e-4,
dt_limit=(0.0, float("inf")),
learnable_init_states=False,
activation="swish",
bias=False,
conv_bias=True,
# Fused kernel and sharding options
chunk_size=256,
use_mem_eff_path=True,
layer_idx=None, # Absorb kwarg for general module
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.conv_init = conv_init
self.expand = expand
self.d_inner = self.expand * self.d_model
self.headdim = headdim
self.ngroups = ngroups
assert self.d_inner % self.headdim == 0
self.nheads = self.d_inner // self.headdim
self.dt_limit = dt_limit
self.learnable_init_states = learnable_init_states
self.activation = activation
self.chunk_size = chunk_size
self.use_mem_eff_path = use_mem_eff_path
self.layer_idx = layer_idx
# Order: [z, x, B, C, dt]
d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=bias, **factory_kwargs)
conv_dim = self.d_inner + 2 * self.ngroups * self.d_state
self.conv1d = nn.Conv1d(
in_channels=conv_dim,
out_channels=conv_dim,
bias=conv_bias,
kernel_size=d_conv,
groups=conv_dim,
padding=d_conv - 1,
**factory_kwargs,
)
if self.conv_init is not None:
nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init)
# self.conv1d.weight._no_weight_decay = True
if self.learnable_init_states:
self.init_states = nn.Parameter(torch.zeros(self.nheads, self.headdim, self.d_state, **factory_kwargs))
self.init_states._no_weight_decay = True
self.act = nn.SiLU()
# Initialize log dt bias
dt = torch.exp(
torch.rand(self.nheads, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
)
dt = torch.clamp(dt, min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
self.dt_bias = nn.Parameter(inv_dt)
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
# name.endswith("bias") in param_grouping.py
self.dt_bias._no_weight_decay = True
# A parameter
assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0]
A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_(*A_init_range)
A_log = torch.log(A).to(dtype=dtype)
self.A_log = nn.Parameter(A_log)
# self.register_buffer("A_log", torch.zeros(self.nheads, dtype=torch.float32, device=device), persistent=True)
self.A_log._no_weight_decay = True
# D "skip" parameter
self.D = nn.Parameter(torch.ones(self.nheads, device=device))
self.D._no_weight_decay = True
# Extra normalization layer right before output projection
assert RMSNormGated is not None
self.norm = RMSNormGated(self.d_inner, eps=1e-5, norm_before_gate=False, **factory_kwargs)
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
def forward(self, u, seq_idx=None):
"""
u: (B, L, D)
Returns: same shape as u
"""
batch, seqlen, dim = u.shape
zxbcdt = self.in_proj(u) # (B, L, d_in_proj)
A = -torch.exp(self.A_log) # (nheads) or (d_inner, d_state)
initial_states=repeat(self.init_states, "... -> b ...", b=batch) if self.learnable_init_states else None
dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)
if self.use_mem_eff_path:
# Fully fused path
out = mamba_split_conv1d_scan_combined(
zxbcdt,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.dt_bias,
A,
D=self.D,
chunk_size=self.chunk_size,
seq_idx=seq_idx,
activation=self.activation,
rmsnorm_weight=self.norm.weight,
rmsnorm_eps=self.norm.eps,
outproj_weight=self.out_proj.weight,
outproj_bias=self.out_proj.bias,
headdim=self.headdim,
ngroups=self.ngroups,
norm_before_gate=False,
initial_states=initial_states,
**dt_limit_kwargs,
)
else:
z, xBC, dt = torch.split(
zxbcdt, [self.d_inner, self.d_inner + 2 * self.ngroups * self.d_state, self.nheads], dim=-1
)
dt = F.softplus(dt + self.dt_bias) # (B, L, nheads)
assert self.activation in ["silu", "swish"]
# 1D Convolution
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
xBC = self.act(
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)
) # (B, L, self.d_inner + 2 * ngroups * d_state)
xBC = xBC[:, :seqlen, :]
else:
xBC = causal_conv1d_fn(
x=xBC.transpose(1, 2),
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
bias=self.conv1d.bias,
activation=self.activation,
).transpose(1, 2)
# Split into 3 main branches: X, B, C
# These correspond to V, K, Q respectively in the SSM/attention duality
x, B, C = torch.split(xBC, [self.d_inner, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
y = mamba_chunk_scan_combined(
rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
dt,
A,
rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
chunk_size=self.chunk_size,
D=self.D,
z=None,
seq_idx=seq_idx,
initial_states=initial_states,
**dt_limit_kwargs,
)
y = rearrange(y, "b l h p -> b l (h p)")
# Multiply "gate" branch and apply extra normalization layer
y = self.norm(y, z)
out = self.out_proj(y)
return out
if __name__ == '__main__':
model = Mamba2Simple(256).cuda()
inputs = torch.randn(2, 128, 256).cuda()
pred = model(inputs)
print(pred.size())
参考文献