YOLOv8 的安装与训练

news2025/1/13 9:30:00

YOLOv8 是 YOLO 系列实时目标检测器中的较新迭代版本,在准确性和速度方面提供了前沿性能。基于之前 YOLO 版本的进步,YOLOv8 引入了新的特性和优化,使其成为各种应用中各种目标检测任务的理想选择。

一、安装显卡驱动与CUDA:

这个系统已经安装好了显卡驱动与CUDA 11.8。

查看一下CUDA 的版本:

ai@jupyter:~$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:33:58_PDT_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0

二、安装 YOLOv8:

ai@jupyter:~$ git clone https://github.com/ultralytics/ultralytics.git

Cloning into 'ultralytics'...
remote: Enumerating objects: 40899, done.
remote: Counting objects: 100% (1546/1546), done.
remote: Compressing objects: 100% (882/882), done.
remote: Total 40899 (delta 1026), reused 1058 (delta 659), pack-reused 39353 (from 1)
Receiving objects: 100% (40899/40899), 31.48 MiB | 12.85 MiB/s, done.
Resolving deltas: 100% (30115/30115), done.

ai@jupyter:~$ pip install ultralytics

ai@jupyter:~$ pip install ultralytics
Looking in indexes: https://mirror.baidu.com/pypi/simple/, https://mirrors.aliyun.com/pypi/simple/
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/ultralytics/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting ultralytics
  Downloading https://mirrors.aliyun.com/pypi/packages/60/b0/6b910499e15fdc7159acfa395f343a8c1138f3a7a7a14848abf131ef9b51/ultralytics-8.2.92-py3-none-any.whl (871 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 871.9/871.9 kB 10.9 MB/s eta 0:00:00
Requirement already satisfied: numpy<2.0.0,>=1.23.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (1.26.4)
Requirement already satisfied: matplotlib>=3.3.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (3.8.4)
Requirement already satisfied: opencv-python>=4.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (4.9.0.80)
Requirement already satisfied: pillow>=7.1.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (10.3.0)
Requirement already satisfied: pyyaml>=5.3.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (6.0.1)
Requirement already satisfied: requests>=2.23.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (2.31.0)
Requirement already satisfied: scipy>=1.4.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (1.13.0)
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/torch/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting torch>=1.8.0 (from ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/41/05/d540049b1832d1062510efc6829634b7fbef5394c757d8312414fb65a3cb/torch-2.4.1-cp310-cp310-manylinux1_x86_64.whl (797.1 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 797.1/797.1 MB 1.4 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/torchvision/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting torchvision>=0.9.0 (from ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/72/55/e0b3821c5595a9a2c8ec98d234b4a0d1142d91daac61f007503d3158f857/torchvision-0.19.1-cp310-cp310-manylinux1_x86_64.whl (7.0 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.0/7.0 MB 17.8 MB/s eta 0:00:00
Requirement already satisfied: tqdm>=4.64.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (4.66.2)
Requirement already satisfied: psutil in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (5.9.8)
Collecting py-cpuinfo (from ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/e0/a9/023730ba63db1e494a271cb018dcd361bd2c917ba7004c3e49d5daf795a2/py_cpuinfo-9.0.0-py3-none-any.whl (22 kB)
Requirement already satisfied: pandas>=1.1.4 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from ultralytics) (2.2.2)
Collecting seaborn>=0.11.0 (from ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl (294 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 294.9/294.9 kB 32.7 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/ultralytics-thop/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting ultralytics-thop>=2.0.0 (from ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/12/3d/36ab0be2d46443a591979e4e1a025f18af43ffa07fb244fb5c7a07e82567/ultralytics_thop-2.0.6-py3-none-any.whl (26 kB)
Requirement already satisfied: contourpy>=1.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from matplotlib>=3.3.0->ultralytics) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from matplotlib>=3.3.0->ultralytics) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from matplotlib>=3.3.0->ultralytics) (4.51.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from matplotlib>=3.3.0->ultralytics) (24.0)
Requirement already satisfied: pyparsing>=2.3.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from matplotlib>=3.3.0->ultralytics) (3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from matplotlib>=3.3.0->ultralytics) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from pandas>=1.1.4->ultralytics) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from pandas>=1.1.4->ultralytics) (2024.1)
Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from requests>=2.23.0->ultralytics) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from requests>=2.23.0->ultralytics) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from requests>=2.23.0->ultralytics) (2.2.1)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from requests>=2.23.0->ultralytics) (2024.2.2)
Requirement already satisfied: filelock in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=1.8.0->ultralytics) (3.13.4)
Requirement already satisfied: typing-extensions>=4.8.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=1.8.0->ultralytics) (4.11.0)
Requirement already satisfied: sympy in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=1.8.0->ultralytics) (1.12)
Collecting networkx (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/38/e9/5f72929373e1a0e8d142a130f3f97e6ff920070f87f91c4e13e40e0fba5a/networkx-3.3-py3-none-any.whl (1.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 19.4 MB/s eta 0:00:00
Requirement already satisfied: jinja2 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=1.8.0->ultralytics) (3.1.3)
Requirement already satisfied: fsspec in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from torch>=1.8.0->ultralytics) (2024.3.1)
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-cuda-nvrtc-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/b6/9f/c64c03f49d6fbc56196664d05dba14e3a561038a81a638eeb47f4d4cfd48/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 15.3 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-cuda-runtime-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/eb/d5/c68b1d2cdfcc59e72e8a5949a37ddb22ae6cade80cd4a57a84d4c8b55472/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 823.6/823.6 kB 22.0 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-cuda-cupti-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/7e/00/6b218edd739ecfc60524e585ba8e6b00554dd908de2c9c66c1af3e44e18d/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.1/14.1 MB 18.4 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-cudnn-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 664.8/664.8 MB 1.7 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-cublas-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-cublas-cu12==12.1.3.1 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/37/6d/121efd7382d5b0284239f4ab1fc1590d86d34ed4a4a2fdb13b30ca8e5740/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 410.6/410.6 MB 2.3 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-cufft-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-cufft-cu12==11.0.2.54 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/86/94/eb540db023ce1d162e7bea9f8f5aa781d57c65aed513c33ee9a5123ead4d/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.6/121.6 MB 7.6 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-curand-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-curand-cu12==10.3.2.106 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/44/31/4890b1c9abc496303412947fc7dcea3d14861720642b49e8ceed89636705/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.5/56.5 MB 11.8 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-cusolver-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 124.2/124.2 MB 7.4 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-cusparse-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.0/196.0 MB 5.0 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-nccl-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-nccl-cu12==2.20.5 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/4b/2a/0a131f572aa09f741c30ccd45a8e56316e8be8dfc7bc19bf0ab7cfef7b19/nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 176.2/176.2 MB 5.6 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-nvtx-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-nvtx-cu12==12.1.105 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/da/d3/8057f0587683ed2fcd4dbfbdfdfa807b9160b809976099d36b8f60d08f03/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 99.1/99.1 kB 15.1 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/triton/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting triton==3.0.0 (from torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/45/27/14cc3101409b9b4b9241d2ba7deaa93535a217a211c86c4cc7151fb12181/triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (209.4 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 209.4/209.4 MB 5.3 MB/s eta 0:00:00
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/nvidia-nvjitlink-cu12/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html
Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.8.0->ultralytics)
  Downloading https://mirrors.aliyun.com/pypi/packages/a8/48/a9775d377cb95585fb188b469387f58ba6738e268de22eae2ad4cedb2c41/nvidia_nvjitlink_cu12-12.6.68-py3-none-manylinux2014_x86_64.whl (19.7 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 19.7/19.7 MB 16.6 MB/s eta 0:00:00
Requirement already satisfied: six>=1.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib>=3.3.0->ultralytics) (1.16.0)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from jinja2->torch>=1.8.0->ultralytics) (2.1.5)
Requirement already satisfied: mpmath>=0.19 in /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages (from sympy->torch>=1.8.0->ultralytics) (1.3.0)
Installing collected packages: py-cpuinfo, triton, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, networkx, nvidia-cusparse-cu12, nvidia-cudnn-cu12, seaborn, nvidia-cusolver-cu12, torch, ultralytics-thop, torchvision, ultralytics
Successfully installed networkx-3.3 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.6.68 nvidia-nvtx-cu12-12.1.105 py-cpuinfo-9.0.0 seaborn-0.13.2 torch-2.4.1 torchvision-0.19.1 triton-3.0.0 ultralytics-8.2.92 ultralytics-thop-2.0.6
WARNING: Skipping page https://mirror.baidu.com/pypi/simple/pip/ because the GET request got Content-Type: application/octet-stream. The only supported Content-Types are application/vnd.pypi.simple.v1+json, application/vnd.pypi.simple.v1+html, and text/html

查看一下 PyTorch 的版本: 

ai@jupyter:~$ pip show torch
Name: torch
Version: 2.4.1
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
Home-page: https://pytorch.org/
Author: PyTorch Team
Author-email: packages@pytorch.org
License: BSD-3
Location: /opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages
Requires: filelock, fsspec, jinja2, networkx, nvidia-cublas-cu12, nvidia-cuda-cupti-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-runtime-cu12, nvidia-cudnn-cu12, nvidia-cufft-cu12, nvidia-curand-cu12, nvidia-cusolver-cu12, nvidia-cusparse-cu12, nvidia-nccl-cu12, nvidia-nvtx-cu12, sympy, triton, typing-extensions
Required-by: torchvision, ultralytics, ultralytics-thop

用 Python 查看一下 PyTorch 的版本: 

ai@jupyter:~$ python
Python 3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> import torch
>>> print(torch.__version__)
2.4.1+cu121

>>> exit()

ai@jupyter:~$ yolo cfg
Printing '/opt/conda/envs/python35-paddle120-env/lib/python3.10/site-packages/ultralytics/cfg/default.yaml'

task: detect
mode: train
model: null
data: null
epochs: 100
time: null
patience: 100
batch: 16
imgsz: 640
save: true
save_period: -1
cache: false
device: null
workers: 8
project: null
name: null
exist_ok: false
pretrained: true
optimizer: auto
verbose: true
seed: 0
deterministic: true
single_cls: false
rect: false
cos_lr: false
close_mosaic: 10
resume: false
amp: true
fraction: 1.0
profile: false
freeze: None
multi_scale: false
overlap_mask: true
mask_ratio: 4
dropout: 0.0
val: true
split: val
save_json: false
save_hybrid: false
conf: null
iou: 0.7
max_det: 300
half: false
dnn: false
plots: true
source: null
vid_stride: 1
stream_buffer: false
visualize: false
augment: false
agnostic_nms: false
classes: null
retina_masks: false
embed: null
show: false
save_frames: false
save_txt: false
save_conf: false
save_crop: false
show_labels: true
show_conf: true
show_boxes: true
line_width: null
format: torchscript
keras: false
optimize: false
int8: false
dynamic: false
simplify: false
opset: null
workspace: 4
nms: false
lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 7.5
cls: 0.5
dfl: 1.5
pose: 12.0
kobj: 1.0
label_smoothing: 0.0
nbs: 64
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
bgr: 0.0
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0
auto_augment: randaugment
erasing: 0.4
crop_fraction: 1.0
cfg: null
tracker: botsort.yaml

三、训练模型:

以 coco128 为例:(自动下载数据集及模型,需要联网)

ai@jupyter:~$ yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
Downloading https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt to 'yolov8n.pt'...

如果本地没有 yolov8n.pt 文件,会直接从 github 上下载,长时间如果下载不下来,可以先手动下载到本地。
ai@jupyter:~$ yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640

Ultralytics YOLOv8.2.92 🚀 Python-3.10.10 torch-2.4.1+cu121 CUDA:0 (Tesla V100-SXM2-32GB, 16384MiB)
engine/trainer: task=detect, mode=train, model=yolov8n.pt, data=coco128.yaml, epochs=100, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train

Dataset 'coco128.yaml' images not found ⚠️, missing path '/home/aistudio/datasets/coco128/images/train2017'
Downloading https://ultralytics.com/assets/coco128.zip to '/home/aistudio/datasets/coco128.zip'...
  2%|██▍                                                                                                                               | 128k/6.66M [00:30<11:33, 9.88kB/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6.66M/6.66M [01:09<00:00, 100kB/s]
Unzipping /home/aistudio/datasets/coco128.zip to /home/aistudio/datasets/coco128...: 100%|██████████| 263/263 [00:00<00:00, 2433.26file/s]
Dataset download success ✅ (75.3s), saved to /home/aistudio/datasets

Downloading https://ultralytics.com/assets/Arial.ttf to '/home/aistudio/.config/Ultralytics/Arial.ttf'...
  0%|                                                                                                                                           | 0.00/755k [00:00<?, ?B/s]
 68%|████████████████████████████████████████████████████████████████████████████████████████▊                                          | 512k/755k [01:03<00:29, 8.44kB/s]
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 755k/755k [01:35<00:00, 8.11kB/s]

                   from  n    params  module                                       arguments                     
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]             
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 
 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]          
Model summary: 225 layers, 3,157,200 parameters, 3,157,184 gradients, 8.9 GFLOPs

Transferred 355/355 items from pretrained weights
Freezing layer 'model.22.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks with YOLOv8n...
AMP: checks passed ✅
train: Scanning /home/aistudio/datasets/coco128/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<00:00, 491.28it/s]
train: New cache created: /home/aistudio/datasets/coco128/labels/train2017.cache
val: Scanning /home/aistudio/datasets/coco128/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<?, ?it/s]
Plotting labels to runs/detect/train/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.000119, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 8 dataloader workers
Logging results to runs/detect/train
Starting training for 100 epochs...

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
      1/100      2.69G      1.214      1.669       1.27        217        640: 100%|██████████| 8/8 [00:04<00:00,  1.60it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:03<00:00,  1.16it/s]
                   all        128        929       0.65      0.516      0.611      0.453

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
      2/100      2.56G        1.2      1.434      1.229        218        640: 100%|██████████| 8/8 [00:03<00:00,  2.55it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:01<00:00,  2.35it/s]
                   all        128        929      0.656      0.545      0.624      0.466

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
      3/100      2.89G      1.155      1.372      1.251        215        640: 100%|██████████| 8/8 [00:02<00:00,  2.94it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:01<00:00,  2.21it/s]
                   all        128        929      0.679      0.546      0.635      0.472


     97/100      2.49G     0.8143     0.6814      0.997         97        640: 100%|██████████| 8/8 [00:02<00:00,  3.33it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:01<00:00,  2.57it/s]
                   all        128        929      0.889      0.809      0.874      0.724

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
     98/100      2.56G      0.808     0.6858     0.9922        117        640: 100%|██████████| 8/8 [00:02<00:00,  3.14it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:01<00:00,  2.29it/s]
                   all        128        929      0.888      0.807      0.874      0.724

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
     99/100      2.55G     0.8293     0.6906     0.9987         72        640: 100%|██████████| 8/8 [00:02<00:00,  3.10it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:01<00:00,  2.18it/s]
                   all        128        929      0.892      0.804      0.872      0.723

      Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size
    100/100      2.49G     0.8595     0.7396      1.023         75        640: 100%|██████████| 8/8 [00:02<00:00,  3.15it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:01<00:00,  2.30it/s]
                   all        128        929       0.89      0.805      0.871      0.723

100 epochs completed in 0.153 hours.
Optimizer stripped from runs/detect/train/weights/last.pt, 6.5MB
Optimizer stripped from runs/detect/train/weights/best.pt, 6.5MB

Validating runs/detect/train/weights/best.pt...
Ultralytics YOLOv8.2.92 🚀 Python-3.10.10 torch-2.4.1+cu121 CUDA:0 (Tesla V100-SXM2-32GB, 16384MiB)
Model summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 4/4 [00:04<00:00,  1.02s/it]
                   all        128        929      0.927      0.802      0.884      0.743
                person         61        254      0.983      0.696      0.881      0.702
               bicycle          3          6      0.869        0.5      0.616      0.476
                   car         12         46      0.928      0.281      0.597      0.337
            motorcycle          4          5      0.939          1      0.995      0.964
              airplane          5          6      0.953          1      0.995      0.964
                   bus          5          7          1      0.773      0.978      0.845
                 train          3          3      0.936          1      0.995      0.764
                 truck          5         12      0.937        0.5       0.62      0.488
                  boat          2          6      0.758      0.526      0.789      0.627
         traffic light          4         14          1      0.298      0.433      0.273
             stop sign          2          2       0.89          1      0.995      0.895
                 bench          5          9          1      0.828      0.975      0.799
                  bird          2         16          1      0.962      0.995      0.808
                   cat          4          4      0.928          1      0.995       0.95
                   dog          9          9      0.993          1      0.995      0.884
                 horse          1          2      0.892          1      0.995      0.897
              elephant          4         17          1       0.93      0.985      0.877
                  bear          1          1      0.813          1      0.995      0.995
                 zebra          2          4      0.931          1      0.995      0.995
               giraffe          4          9      0.999          1      0.995      0.913
              backpack          4          6      0.952      0.667      0.834      0.691
              umbrella          4         18      0.945       0.96      0.992      0.825
               handbag          9         19          1      0.494      0.757      0.506
                   tie          6          7      0.938      0.857      0.861      0.762
              suitcase          2          4          1      0.935      0.995      0.809
               frisbee          5          5      0.905        0.8      0.802      0.742
                  skis          1          1      0.865          1      0.995      0.895
             snowboard          2          7      0.854      0.837      0.944      0.752
           sports ball          6          6          1      0.555      0.673      0.397
                  kite          2         10          1      0.275      0.802      0.341
          baseball bat          4          4      0.734        0.5      0.825      0.476
        baseball glove          4          7      0.986      0.429      0.439      0.381
            skateboard          3          5          1      0.798       0.84      0.648
         tennis racket          5          7          1       0.66      0.718      0.498
                bottle          6         18          1      0.477      0.835      0.577
            wine glass          5         16      0.902      0.438      0.806      0.568
                   cup         10         36      0.992      0.667      0.898      0.674
                  fork          6          6       0.94      0.833      0.872      0.704
                 knife          7         16       0.85      0.625      0.824      0.549
                 spoon          5         22      0.939      0.698      0.775      0.603
                  bowl          9         28      0.959      0.826        0.9      0.762
                banana          1          1      0.792          1      0.995      0.995
              sandwich          2          2      0.876          1      0.995      0.995
                orange          1          4      0.789          1      0.995      0.798
              broccoli          4         11      0.834      0.364      0.544      0.412
                carrot          3         24      0.955      0.876      0.965      0.702
               hot dog          1          2      0.871          1      0.995      0.995
                 pizza          5          5      0.942          1      0.995      0.958
                 donut          2         14      0.916          1      0.995      0.938
                  cake          4          4      0.927          1      0.995       0.96
                 chair          9         35       0.96      0.685      0.892      0.683
                 couch          5          6          1      0.884      0.995      0.828
          potted plant          9         14      0.935      0.857      0.978      0.852
                   bed          3          3      0.912          1      0.995      0.995
          dining table         10         13      0.986          1      0.995      0.879
                toilet          2          2      0.869          1      0.995      0.848
                    tv          2          2       0.88          1      0.995      0.946
                laptop          2          3      0.912          1      0.995      0.908
                 mouse          2          2      0.759        0.5      0.504      0.403
                remote          5          8      0.954       0.75      0.751      0.656
            cell phone          5          8          1       0.58      0.653      0.442
             microwave          3          3      0.971          1      0.995      0.901
                  oven          5          5      0.755      0.618      0.722      0.588
                  sink          4          6      0.977          1      0.995      0.788
          refrigerator          5          5       0.93          1      0.995      0.977
                  book          6         29      0.967      0.448      0.709      0.509
                 clock          8          9      0.958      0.889      0.961      0.856
                  vase          2          2       0.86          1      0.995      0.895
              scissors          1          1      0.805          1      0.995      0.697
            teddy bear          6         21          1      0.851      0.958      0.797
            toothbrush          2          5       0.99          1      0.995      0.929
Speed: 0.2ms preprocess, 3.1ms inference, 0.0ms loss, 5.2ms postprocess per image
Results saved to runs/detect/train
💡 Learn more at https://docs.ultralytics.com/modes/train

训练完的最好模型为:/home/aistudio/runs/detect/train/weights/best.pt

训练过程保存为:runs/detect/train/results.png,如下图:

 四、推理验证:

  • 使用经典的图片验证:

直接使用网上的图片作为测试:source='https://ultralytics.com/images/bus.jpg',或者先下载到本地。

ai@jupyter:~$ yolo detect predict model=runs/detect/train/weights/best.pt source=bus.jpg

Ultralytics YOLOv8.2.92 🚀 Python-3.10.10 torch-2.4.1+cu121 CUDA:0 (Tesla V100-SXM2-32GB, 16384MiB)
Model summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs

image 1/1 /home/aistudio/bus.jpg: 640x480 3 persons, 1 bus, 1 stop sign, 39.6ms
Speed: 7.0ms preprocess, 39.6ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 480)
Results saved to runs/detect/predict
💡 Learn more at https://docs.ultralytics.com/modes/predict

  • 换一张图片测试:

ai@jupyter:~$ yolo detect predict model=runs/detect/train/weights/best.pt source=030.jpg
Ultralytics YOLOv8.2.92 🚀 Python-3.10.10 torch-2.4.1+cu121 CUDA:0 (Tesla V100-SXM2-32GB, 16384MiB)
Model summary (fused): 168 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs

image 1/1 /home/aistudio/030.jpg: 448x640 1 potted plant, 1 vase, 139.9ms
Speed: 7.6ms preprocess, 139.9ms inference, 2.5ms postprocess per image at shape (1, 3, 448, 640)
Results saved to runs/detect/predict2
💡 Learn more at https://docs.ultralytics.com/modes/predict

五、导出(Export)

将 训练好的模型导出为不同的格式,如 ONNX、CoreML 等。

yolo export model=runs/detect/train/weights/best.pt format=onnx

 小结:

YOLOv8 在多个领域中表现出色,特别是在需要高精度和高速度的实时检测任务中,如无人驾驶、智能监控和工业检测等。这些应用场景对目标检测的实时性和准确性有着极高的要求,而 YOLOv8 正是满足这些需求的理想选择。

综上所述,YOLOv8 通过模型结构改进、数据增强和训练策略优化、多尺度检测和轻量化以及提供多种模型变体等新特性和优化措施,进一步提升了目标检测的精度和速度,并扩展了其应用场景。

                                                                                         老徐,仲秋,2024/9/17

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2142528.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

成都院干翻华东院成第一水电设计院!

注&#xff1a;文章来源于百度。版权归原作者所有。。 昨天中国电建发布了2024年中报&#xff0c;一般中报我是不怎么研究的&#xff0c;除非利益相关。 但今年电建的中报亮点很多&#xff0c;其中最显眼的就要数电建成都院在上半年干翻了传统龙头老大——华东院。 在净利润…

【C++】一次rustdesk-server编译记录

RustDesk Server 是一个开源的远程桌面解决方案&#xff0c;允许用户自托管自己的远程桌面服务器。该项目是免费且开源的&#xff0c;支持多种平台和环境。RustDesk Server 提供了 ID/Rendezvous 服务器和 Relay 服务器&#xff0c;以及一些 CLI 工具&#xff0c;方便用户进行远…

[Redis] Redis中的set和zset类型

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…

动手学深度学习8.5. 循环神经网络的从零开始实现-笔记练习(PyTorch)

本节课程地址&#xff1a;从零开始实现_哔哩哔哩_bilibili 本节教材地址&#xff1a;8.5. 循环神经网络的从零开始实现 — 动手学深度学习 2.0.0 documentation (d2l.ai) 本节开源代码&#xff1a;...>d2l-zh>pytorch>chapter_multilayer-perceptrons>rnn-scratc…

【优化器】Optimizer——深度学习中的优化器是什么作用呢?

【优化器】Optimizer——深度学习中的优化器是什么作用呢&#xff1f; 【优化器】Optimizer——深度学习中的优化器是什么作用呢&#xff1f; 文章目录 【优化器】Optimizer——深度学习中的优化器是什么作用呢&#xff1f;1.什么是优化器&#xff1f;梯度下降法3. 常见的优化…

数据结构易错整理1

目录 数据结构的基础概念 数据结构基础概念 数据结构的逻辑结构 数据结构的物理结构 算法分析 时间复杂度 例题 数据结构的基础概念 数据结构基础概念 设计存储结构时不仅要存储格数据元素的值&#xff0c;而且还要存储数据元素之间的关系 数据结构具有特定关系的数据…

C/C++语言基础--从C到C++的不同(下),15个部分说明C与C++的不同

本专栏目的 更新C/C的基础语法&#xff0c;包括C的一些新特性 前言 1-10在上篇C/C语言基础–从C到C的不同(上&#xff09;&#xff1b;当然C和C的不同还有很多&#xff0c;本人暂时只总结这些&#xff0c;其他的慢慢更新&#xff1b;上一篇C/C语言基础–从C到C的不同(上&…

Sass实现文字两侧横线及Sass常用方案

Sass常用方案及Sass实现文字两侧横线 1.Sass实现文字两侧横线2.用Sass简化媒体查询3.使用继承占位符实现样式复用4.Sass 模块化5.lighten 和 darken 自我记录 1.Sass实现文字两侧横线 mixin 的基本作用&#xff1a; 代码复用&#xff1a;把常用的样式封装在一起&#xff0c;…

C++和OpenGL实现3D游戏编程【目录】

欢迎来到zhooyu的专栏。 个人主页&#xff1a;【zhooyu】 文章专栏&#xff1a;【OpenGL实现3D游戏编程】 贝塞尔曲面演示&#xff1a; 贝塞尔曲面演示zhooyu 本专栏内容&#xff1a; 我们从游戏的角度出发&#xff0c;用C去了解一下游戏中的功能都是怎么实现的。这一切还是要…

【刷题日记】螺旋矩阵

54. 螺旋矩阵 这个是一道模拟题&#xff0c;但我记得我大一第一次做这道题的时候真的就是纯按步骤模拟&#xff0c;没有对代码就行优化&#xff0c;导致代码写的很臃肿。 有这么几个地方可以改进。 看题目可以知道最终的结果一定是rows*cols个结点,所以只需要遍历rows*cols次…

Docker部署镜像 发布容器 容器网络互联 前端打包

准备工作 导入相关依赖 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-spring-boot3-starter</artifactId><version>3.5.7</version></dependency><dependency><groupId>com.baomidou<…

CLIP论文中关键信息记录

由于clip论文过长&#xff0c;一直无法完整的阅读该论文&#xff0c;故而抽取论文中的关键信息进行记录。主要记录clip是如何实现的的&#xff08;提出背景、训练数据、设计模式、训练超参数、prompt的作用&#xff09;&#xff0c;clip的能力&#xff08;clip的模型版本、clip…

【Python机器学习】序列到序列建模——对序列到序列模型的增强

有两种增强训练序列到序列模型的方法&#xff0c;可以提高模型的精确率和可扩展性。 使用装桶法降低训练复杂度 输入序列可以有不同的长度&#xff0c;这使短序列的训练数据添加了大量填充词条。过多的填充会使计算成本高昂&#xff0c;特别是当大多数序列都很短&#xff0c;…

你的绩效是不是常年都是B

原创不易&#xff0c;求赞&#xff0c;求关注&#xff0c;&#x1f64f;&#x1f64f;&#x1f64f;&#x1f64f;&#x1f64f;&#x1f64f;&#x1f64f;&#x1f64f; 目录 原创不易&#xff0c;求赞&#xff0c;求关注&#xff0c;&#x1f64f;&#x1f64f;&#x1f64…

村落检测系统源码分享

村落检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vision …

Chainlit集成Langchain并使用通义千问AI知识库高级检索(多重查询)网页对话应用教程

前言 之前写过几篇利用Chainlit集成Langchain和国内通义千问大模型集成的知识库检索增加的网页对话应用的技术文章。文章中关于Langchain的知识库检索只是入门级别的教学&#xff0c;本篇文章针对Langchain的知识库高级检索技术和之前对话应用的代码进行完善。 本次主要改进的…

月薪14K的网安公司,来做一下笔试题呀~

《网安面试指南》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484339&idx1&sn356300f169de74e7a778b04bfbbbd0ab&chksmc0e47aeff793f3f9a5f7abcfa57695e8944e52bca2de2c7a3eb1aecb3c1e6b9cb6abe509d51f&scene21#wechat_redirect 网络安全简介…

leetcode-枚举算法

1.两数之和 题目一&#xff1a;两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案&#xff0c;并且你不能使用两次相同的元素…

JVM JMM 专题篇 ( 12000 字详解 )

一&#xff1a;JVM 简介 JVM 是 Java Virtual Machine 的简称&#xff0c;意为 Java 虚拟机&#xff0c;虚拟机是指通过软件模拟的具有完整硬件功能的、运行在一个完全隔离的环境中的完整计算机系统。 常见的虚拟机&#xff1a;JVM、VMwave、Virtual Box&#xff0c;JVM 和其…

微调大模型不再难:LoRA方法带你轻松节省99%的训练成本!

我们之前说大模型有四种玩家&#xff0c;其中前三种都是要做模型训练的。而大部分公司或个人&#xff0c;都是在第二种开源大模型的基础上来做训练。 而这种训练方式又分为两种。一种要么就是从头训练&#xff0c;要么就Fine-tuning接着开源模型来训练&#xff0c;在基座模型已…