LC并联电路在正弦稳态下的传递函数推导(LC并联谐振选频电路)

news2024/9/19 10:04:22

LC并联电路在正弦稳态下的传递函数推导(LC并联谐振选频电路)

本文通过 1.解微分方程、2.阻抗模型两种方法推导 LC 并联选频电路在正弦稳态条件下的传递函数,并通过仿真验证不同频率时 vo(t) 与 vi(t) 的幅值相角的关系。

电路介绍

已知条件

电路结构如下

LC并联电路

  • R:电阻值
  • C:电容值
  • L:电感值
  • 输入电源vi(t)
    v i ( t ) = V I c o s ( w t ) v_i(t) = V_Icos(wt) vi(t)=VIcos(wt)

其中

V I :输入电压的幅值 w :输入电源的角频率 w 2 π :输入正弦信号的频率 \begin{array}{c} V_I: 输入电压的幅值\\ w: 输入电源的角频率\\ \frac{w}{2\pi} :输入正弦信号的频率 \end{array} VI:输入电压的幅值w:输入电源的角频率2πw:输入正弦信号的频率

理论计算

1.解微分方程法

解微分方程法常用的四个步骤

  1. 根据节点法列写微分方程
  2. 找出特解 vp(t)
  3. 找出对应的齐次方程的通解 vh(t)
  4. 根据初始条件计算通解中的常数参数

总的通解为特解+齐次解

v ( t ) = v p ( t ) + v h ( t ) v(t) = v_p(t) + v_h(t) v(t)=vp(t)+vh(t)

v p ( t ) v_{p}(t) vp(t) ,特解

v h ( t ) v_{h}(t) vh(t) ,齐次解

1.1 列些微分方程

前置知识

  • 电容伏安特性: i = C d v d t i = C\frac{dv}{dt} i=Cdtdv
  • 电感伏安特性: v = L d i d t v = L\frac{di}{dt} v=Ldtdi
  • 电感伏安特性的积分形式:
    1 L ∫ − ∞ t v d t = i \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v \mathrm{d} t \end{aligned} = i L1tvdt=i

节点法列方程

v i ( t ) − v o ( t ) R = C d v o ( t ) d t + 1 L ∫ − ∞ t v o ( t ) d t \frac{v_i(t) - v_o(t)}{R} = C\frac{dv_o(t)}{dt} + \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v_o(t) \mathrm{d} t \end{aligned} Rvi(t)vo(t)=Cdtdvo(t)+L1tvo(t)dt

整理移相得

v i ( t ) R = C d v o ( t ) d t + 1 L ∫ − ∞ t v o ( t ) d t + v o ( t ) R \frac{v_i(t)}{R} = C\frac{dv_o(t)}{dt} + \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v_o(t) \mathrm{d} t \end{aligned} +\frac{v_o(t)}{R} Rvi(t)=Cdtdvo(t)+L1tvo(t)dt+Rvo(t)

等式两边对 t 微分,且带入 $
v_i(t) = V_Icos(wt)
$ 可得:

− w V I s i n ( w t ) R = C d v o 2 ( t ) d t 2 + 1 R d v o ( t ) d t + 1 L v o ( t ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ C\frac{dv_o^2(t)}{dt^2} +\frac{1}{R}\frac{dv_o(t)}{dt} + \frac{1}{L}v_o(t) \end{array} RwVIsin(wt)=Cdt2dvo2(t)+R1dtdvo(t)+L1vo(t)

1.2 找特解

设 vo(t) 的特解的形式为 v p ( t ) = A c o s ( w t + ϕ ) v_p(t) = Acos(wt+\phi) vp(t)=Acos(wt+ϕ),其中 A 和 ∅ 为要求得未知量,将 vp(t) 带入微分方程,可得:

− w V I s i n ( w t ) R = − C w 2 A c o s ( w t + ϕ ) − 1 R w A s i n ( w t + ϕ ) + 1 L A c o s ( w t + ϕ ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = -Cw^2Acos(wt+\phi) \\ -\frac{1}{R}wAsin(wt+\phi) + \frac{1}{L}Acos(wt+\phi) \end{array} RwVIsin(wt)=Cw2Acos(wt+ϕ)R1wAsin(wt+ϕ)+L1Acos(wt+ϕ)

利用三角函数的公式可得:

− w V I s i n ( w t ) R = − C w 2 A c o s ( w t ) c o s ( ϕ ) + C w 2 A s i n ( w t ) s i n ( ϕ ) − w A R s i n ( w t ) c o s ( ϕ ) − w A R c o s ( w t ) s i n ( ϕ ) + A L c o s ( w t ) c o s ( ϕ ) − A L s i n ( w t ) s i n ( ϕ ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = -Cw^2Acos(wt)cos(\phi) + \\ Cw^2Asin(wt)sin(\phi)-\frac{wA}{R}sin(wt)cos(\phi) \\ -\frac{wA}{R}cos(wt)sin(\phi) + \frac{A}{L}cos(wt)cos(\phi)\\ -\frac{A}{L}sin(wt)sin(\phi) \end{array} RwVIsin(wt)=Cw2Acos(wt)cos(ϕ)+Cw2Asin(wt)sin(ϕ)RwAsin(wt)cos(ϕ)RwAcos(wt)sin(ϕ)+LAcos(wt)cos(ϕ)LAsin(wt)sin(ϕ)

合并同类项

− w V I s i n ( w t ) R = ( A L − C w 2 A ) c o s ( w t ) c o s ( ϕ ) + ( C w 2 A − A L ) s i n ( w t ) s i n ( ϕ ) − w A R s i n ( w t ) c o s ( ϕ ) − w A R c o s ( w t ) s i n ( ϕ ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ (\frac{A}{L}-Cw^2A)cos(wt)cos(\phi) + \\ (Cw^2A-\frac{A}{L})sin(wt)sin(\phi)-\\ \frac{wA}{R}sin(wt)cos(\phi) \\ -\frac{wA}{R}cos(wt)sin(\phi) \end{array} RwVIsin(wt)=(LACw2A)cos(wt)cos(ϕ)+(Cw2ALA)sin(wt)sin(ϕ)RwAsin(wt)cos(ϕ)RwAcos(wt)sin(ϕ)

提公因式

− w V I s i n ( w t ) R = ( A L − C w 2 A ) ( c o s ( w t ) c o s ( ϕ ) − s i n ( w t ) s i n ( ϕ ) ) − w A R ( s i n ( w t ) c o s ( ϕ ) + c o s ( w t ) s i n ( ϕ ) ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ (\frac{A}{L}-Cw^2A)(cos(wt)cos(\phi)\\ -sin(wt)sin(\phi))\\ -\frac{wA}{R}(sin(wt)cos(\phi) \\ +cos(wt)sin(\phi)) \end{array} RwVIsin(wt)=(LACw2A)(cos(wt)cos(ϕ)sin(wt)sin(ϕ))RwA(sin(wt)cos(ϕ)+cos(wt)sin(ϕ))

利用三角函数公式合并

− w V I s i n ( w t ) R = ( A L − C w 2 A ) c o s ( w t + ϕ ) − w A R s i n ( w t + ϕ ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ (\frac{A}{L}-Cw^2A)cos(wt+\phi) \\ -\frac{wA}{R}sin(wt+\phi) \end{array} RwVIsin(wt)=(LACw2A)cos(wt+ϕ)RwAsin(wt+ϕ)

根据以下公式

A 1 c o s ( θ ) − A 2 s i n ( θ ) = A 1 2 + A 2 2 s i n ( θ − t a n − 1 ( A 1 A 2 ) ) \begin{array}{c} A_1cos(\theta) - A_2sin(\theta)\\ =\sqrt{A_1^2+A_2^2}sin(\theta-tan^{-1}(\frac{A_1}{A_2})) \end{array} A1cos(θ)A2sin(θ)=A12+A22 sin(θtan1(A2A1))

可以继续合并化简为:

− w V I s i n ( w t ) R = ( A L − C w 2 A ) 2 + ( w A R ) 2 ∗ s i n ( w t + ϕ − t a n − 1 ( A L − C w 2 A w A R ) ) \begin{array}{c} \frac{-wV_Isin(wt)}{R} = \\ \sqrt{(\frac{A}{L}-Cw^2A)^2+(\frac{wA}{R})^2}*\\ sin(wt+\phi-tan^{-1}(\frac{\frac{A}{L}-Cw^2A}{\frac{wA}{R}})) \end{array} RwVIsin(wt)=(LACw2A)2+(RwA)2 sin(wt+ϕtan1(RwALACw2A))

令对应位置相等,可得

− w V I R = ( A L − C w 2 A ) 2 + ( w A R ) 2 \begin{array}{c} \frac{-wV_I}{R} = \sqrt{(\frac{A}{L}-Cw^2A)^2+(\frac{wA}{R})^2} \end{array} RwVI=(LACw2A)2+(RwA)2

ϕ = t a n − 1 ( R ( 1 − C w 2 L ) w L ) \begin{array}{c} \phi = tan^{-1}(\frac{R(1-Cw^2L)}{wL}) \end{array} ϕ=tan1(wLR(1Cw2L))

化简上式可得

( w V I ) 2 R 2 = ( A L − C w 2 A ) 2 + ( w A R ) 2 \begin{array}{c} \frac{(wV_I)^2}{R^2} = (\frac{A}{L}-Cw^2A)^2+(\frac{wA}{R})^2 \end{array} R2(wVI)2=(LACw2A)2+(RwA)2

分解因式

( w V I ) 2 R 2 = A 2 L 2 + ( C w 2 A ) 2 − 2 A L C w 2 A + ( w A R ) 2 \begin{array}{c} \frac{(wV_I)^2}{R^2} = \\ \frac{A^2}{L^2}+(Cw^2A)^2-2\frac{A}{L}Cw^2A+(\frac{wA}{R})^2 \end{array} R2(wVI)2=L2A2+(Cw2A)22LACw2A+(RwA)2

两边同时乘以 L2R2

( L w V I ) 2 = A 2 R 2 + ( L R C w 2 A ) 2 − 2 A 2 L R 2 C w 2 + ( L w A ) 2 \begin{array}{c} (LwV_I)^2 = A^2R^2+(LRCw^2A)^2\\ -2A^2LR^2Cw^2+(LwA)^2 \end{array} (LwVI)2=A2R2+(LRCw2A)22A2LR2Cw2+(LwA)2

提出 A 移项整理得

A 2 = ( L w V I ) 2 R 2 + ( L R C w 2 ) 2 − 2 L R 2 C w 2 + ( L w ) 2 \begin{array}{c} A^2 = \frac{(LwV_I)^2}{R^2+(LRCw^2)^2 -2LR^2Cw^2+(Lw)^2} \end{array} A2=R2+(LRCw2)22LR2Cw2+(Lw)2(LwVI)2

分式上下同时除以 (Lw)2

A 2 = V I 2 ( R L w ) 2 + ( R C w ) 2 − 2 R 2 C L + 1 \begin{array}{c} A^2 = \frac{V_I^2}{(\frac{R}{Lw})^2+(RCw)^2-\frac{2R^2C}{L}+1} \end{array} A2=(LwR)2+(RCw)2L2R2C+1VI2

两边开方,同时只取正解

A = V I ( R L w ) 2 + ( R C w ) 2 − 2 R 2 C L + 1 \begin{array}{c} A = \frac{V_I}{\sqrt{(\frac{R}{Lw})^2+(RCw)^2-\frac{2R^2C}{L}+1}} \end{array} A=(LwR)2+(RCw)2L2R2C+1 VI

因此,可得 vp

v p ( t ) = A c o s ( w t + ϕ ) v_p(t) = A cos(wt + \phi) vp(t)=Acos(wt+ϕ)

其中:

A = V I ( R L w ) 2 + ( R C w ) 2 − 2 R 2 C L + 1 \begin{array}{c} A = \frac{V_I}{\sqrt{(\frac{R}{Lw})^2+(RCw)^2-\frac{2R^2C}{L}+1}} \end{array} A=(LwR)2+(RCw)2L2R2C+1 VI

ϕ = t a n − 1 ( R ( 1 − C w 2 L ) w L ) \begin{array}{c} \phi = tan^{-1}(\frac{R(1-Cw^2L)}{wL}) \end{array} ϕ=tan1(wLR(1Cw2L))

1.3 找通解

微分方程对应的齐次方程为

0 = C d v o 2 ( t ) d t 2 + 1 R d v o ( t ) d t + 1 L v o ( t ) \begin{array}{c} 0 = C\frac{dv_o^2(t)}{dt^2} +\frac{1}{R}\frac{dv_o(t)}{dt} + \frac{1}{L}v_o(t) \end{array} 0=Cdt2dvo2(t)+R1dtdvo(t)+L1vo(t)

设齐次微分方程解的形式为

v h = A e s t \begin{array}{c} v_h = Ae^{st} \end{array} vh=Aest

其中 A 和 s 为待确定的参数,带入可得

0 = C A s 2 e s t + 1 R s A e s t + 1 L A e s t \begin{array}{c} 0 = CAs^2e^{st} + \frac{1}{R} sAe^{st} + \frac{1}{L}Ae^{st} \end{array} 0=CAs2est+R1sAest+L1Aest

不考虑 A 为 0 的情况,约掉同类项后可得

0 = C s 2 + 1 R s + 1 L \begin{array}{c} 0 = Cs^2 + \frac{1}{R} s + \frac{1}{L} \end{array} 0=Cs2+R1s+L1

解得

s 1 = − ( 1 R − 1 R 2 − 4 C L ) 2 C \begin{array}{c} s_1 = \frac{-(\frac{1}{R}-\sqrt{\frac{1}{R^2} - \frac{4C}{L}})}{2C} \end{array} s1=2C(R1R21L4C )

s 2 = − ( 1 R + 1 R 2 − 4 C L ) 2 C \begin{array}{c} s_2 = \frac{-(\frac{1}{R}+\sqrt{\frac{1}{R^2} - \frac{4C}{L}})}{2C} \end{array} s2=2C(R1+R21L4C )

可得

v h = A 1 e s 1 t + A 2 e s 2 t \begin{array}{c} v_h = A_1e^{s_1t} + A_2e^{s_2t} \end{array} vh=A1es1t+A2es2t

因为 C > 0,L > 0,所以

( 1 R 2 − 4 C L ) < 1 R 2 \begin{array}{c} (\frac{1}{R^2} - \frac{4C}{L}) < \frac{1}{R^2} \end{array} (R21L4C)<R21

所以
( 1 R − 1 R 2 − 4 C L ) > 0 \begin{array}{c} (\frac{1}{R}-\sqrt{\frac{1}{R^2} - \frac{4C}{L}}) > 0 \end{array} (R1R21L4C )>0

所以 s1 < 0,s2 < 0

同时,我们讨论的是正弦稳态的情况下的响应,所以 t 趋近于无限长,此时

A 1 e s 1 t → 0 , A 2 e s 2 t → 0 A_1e^{s_1t} \rightarrow 0,\qquad A_2e^{s_2t} \rightarrow 0 A1es1t0,A2es2t0

所以 vh = 0。

1.4 根据初始条件确定参数

由于稳态条件下通解为 0, 所以这一步不需要了。

1.5 最终的解

至此,用微分方程的方法得到的最终的解为

v o ( t ) = v p ( t ) + v h ( t ) v_o(t) = v_p(t) + v_h(t) vo(t)=vp(t)+vh(t)

v o ( t ) = A c o s ( w t + ϕ ) v_o(t) = A cos(wt + \phi) vo(t)=Acos(wt+ϕ)

其中:

A = V I ( R L w ) 2 + ( R C w ) 2 − 2 R 2 C L + 1 \begin{array}{c} A = \frac{V_I}{\sqrt{(\frac{R}{Lw})^2+(RCw)^2-\frac{2R^2C}{L}+1}} \end{array} A=(LwR)2+(RCw)2L2R2C+1 VI

ϕ = t a n − 1 ( R ( 1 − C w 2 L ) w L ) \begin{array}{c} \phi = tan^{-1}(\frac{R(1-Cw^2L)}{wL}) \end{array} ϕ=tan1(wLR(1Cw2L))

2.阻抗模型方法

阻抗模型下的电路示意图
阻抗模型

2.1 基础知识

电阻的阻抗模型:
Z R = R Z_R = R ZR=R

电容的阻抗模型:

Z C = 1 j w C Z_C = \frac{1}{jwC} ZC=jwC1

电感的阻抗模型:

Z L = j w L Z_L = jwL ZL=jwL

阻抗模型里,输入输出都是复数。

复数输入 Vi 为:

V i = V I e j w t V_i = V_Ie^{jwt} Vi=VIejwt

复数输出 Vo 为:

V o = V O e j w t + ϕ V_o = V_Oe^{jwt + \phi} Vo=VOejwt+ϕ

2.2 计算过程

阻抗模型的适用条件是正弦稳态条件下,可以直接利用分压法进行计算。

V o ( t ) = V i ( t ) Z C / / Z L Z R + Z C / / Z L V_o(t) = V_i(t) \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} Vo(t)=Vi(t)ZR+ZC//ZLZC//ZL

其中

Z C / / Z L = 1 j w C + 1 j w L Z_C // Z_L = \frac{1}{jwC + \frac{1}{jwL}} ZC//ZL=jwC+jwL11

带入,可得

Z C / / Z L Z R + Z C / / Z L = 1 j w C + 1 j w L R + 1 j w C + 1 j w L \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{\frac{1}{jwC + \frac{1}{jwL}}}{R+\frac{1}{jwC + \frac{1}{jwL}}} \end{array} ZR+ZC//ZLZC//ZL=R+jwC+jwL11jwC+jwL11

分子分母同时除以

1 j w C + 1 j w L \frac{1}{jwC + \frac{1}{jwL}} jwC+jwL11

可得

Z C / / Z L Z R + Z C / / Z L = 1 R ( j w C + 1 j w L ) + 1 \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{1}{R(jwC+\frac{1}{jwL})+1} \end{array} ZR+ZC//ZLZC//ZL=R(jwC+jwL1)+11

继续化简

Z C / / Z L Z R + Z C / / Z L = 1 j ( R w C − R w L ) + 1 \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{1}{j(RwC-\frac{R}{wL})+1} \end{array} ZR+ZC//ZLZC//ZL=j(RwCwLR)+11

用复数的角坐标表示

Z C / / Z L Z R + Z C / / Z L = 1 1 + ( R w C − R w L ) 2 e j t a n − 1 ( R w C − R w L ) \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{1}{\sqrt{1+(RwC-\frac{R}{wL})^2}e^{jtan^{-1}(RwC-\frac{R}{wL})}} \end{array} ZR+ZC//ZLZC//ZL=1+(RwCwLR)2 ejtan1(RwCwLR)1

拆分并化简倒数为负指数
Z C / / Z L Z R + Z C / / Z L = 1 1 + ( R w C − R w L ) 2 e − j t a n − 1 ( R w C − R w L ) \begin{array}{c} \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} = \frac{1}{\sqrt{1+(RwC-\frac{R}{wL})^2}} e^{-jtan^{-1}(RwC-\frac{R}{wL})} \end{array} ZR+ZC//ZLZC//ZL=1+(RwCwLR)2 1ejtan1(RwCwLR)

将Vi(t),Vo(t)以及上边的传递函数带入

V o ( t ) = V i ( t ) Z C / / Z L Z R + Z C / / Z L \begin{array}{c} V_o(t) = V_i(t) \frac{Z_C // Z_L}{Z_R + Z_C//Z_L} \end{array} Vo(t)=Vi(t)ZR+ZC//ZLZC//ZL

可得

V O e j ( w t + ϕ ) = V I e j w t 1 1 + ( R w C − R w L ) 2 e − j t a n − 1 ( R w C − R w L ) \begin{array}{c} V_Oe^{j(wt + \phi)} = \\ V_Ie^{jwt}\frac{1}{\sqrt{1+(RwC-\frac{R}{wL})^2}} e^{-jtan^{-1}(RwC-\frac{R}{wL})} \end{array} VOej(wt+ϕ)=VIejwt1+(RwCwLR)2 1ejtan1(RwCwLR)

合并化简可得

V O e j ( w t + ϕ ) = V I 1 + ( R w C − R w L ) 2 e j ( w t − t a n − 1 ( R w C − R w L ) ) \begin{array}{c} V_Oe^{j(wt + \phi)} =\\ \frac{V_I}{\sqrt{1+(RwC-\frac{R}{wL})^2}} e^{j(wt-tan^{-1}(RwC-\frac{R}{wL}))} \end{array} VOej(wt+ϕ)=1+(RwCwLR)2 VIej(wttan1(RwCwLR))

取对应项相等,可得

V O = V I 1 + ( R w C − R w L ) 2 \begin{array}{c} V_O= \frac{V_I}{\sqrt{1+(RwC-\frac{R}{wL})^2}} \end{array} VO=1+(RwCwLR)2 VI

ϕ = − t a n − 1 ( R w C − R w L ) \phi =-tan^{-1}(RwC-\frac{R}{wL}) ϕ=tan1(RwCwLR)

根据欧拉公式展开,并取虚部即为要求的时域部分的结果

v o ( t ) = V O c o s ( w t + ϕ ) v_o(t) = V_Ocos(wt+\phi) vo(t)=VOcos(wt+ϕ)

其中

V O = V I 1 + ( R w C − R w L ) 2 V_O= \frac{V_I}{\sqrt{1+(RwC-\frac{R}{wL})^2}} VO=1+(RwCwLR)2 VI

ϕ = − t a n − 1 ( R w C − R w L ) \phi =-tan^{-1}(RwC-\frac{R}{wL}) ϕ=tan1(RwCwLR)

与微分方程计算的结果一致。

绘制函数曲线

传递函数

使用函数绘制工具,以 w 作为变量,绘制传递函数的曲线,并调整 L,R,C 参数,观察不同参数对传递函数的影响,绘制演示如下

下面视频是不同 w 下的幅值变化曲线,可以观察到改变 L 可以调整谐振频率,更改 C 既会影响谐振频率,又会改变通频带的胖瘦(品质因数 Q ),更改 R 只改变胖瘦(品质因数 Q ),不改变谐振频率,在谐振频率处传递函数的幅值为1,说明输出幅值与输入幅值相等。

LC并联电路传递函数幅值随w的变化

下面是不同 w 下的相角变化曲线,上下的角度是正负 90°,改变 R 不会改变谐振频率,在谐振频率相角为 0°。

LC并联电路相角随w的变化

通过曲线图可以看到,电阻会影响品质因数,但是不会改变谐振频率,谐振频率处的输出信号幅值与输入相等,相角偏移为0,说明谐振时,输出与输入完全一致。

谐振频率为:

F = 1 2 π L C F = \frac{1}{2\pi\sqrt{LC}} F=2πLC 1

电路的品质因数 Q 为谐振频率 与 带宽的比值,带宽是幅值为幅值为谐振点幅值的 0.707 倍时的频率点的差值,因此,波形越瘦,电路的品质因数越高,改变电阻可以改变品质因数。

仿真验证

下图仿真在谐振点时输入信号与输出信号完全相同

谐振点仿真结果

下图是扫频的仿真,可以看到,在谐振点处传递函数幅值最大为 1,且相角为0.

交流扫频仿真结果

参考

正弦稳态:https://www.bilibili.com/video/BV1ts411v7Ep?p=17

阻抗模型:https://www.bilibili.com/video/BV1ts411v7Ep?p=19

电路的 Q 值: https://www.crystal-radio.eu/enlckring.htm#q

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2141090.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Axure RP实战:打造高效图形旋转验证码

Axure RP实战&#xff1a;打造高效图形旋转验证码 在数字产品设计的海洋中&#xff0c;验证码环节往往是用户交互体验的细微之处&#xff0c;却承载着验证用户身份的重要任务。 传统的文本验证码虽然简单直接&#xff0c;但随着用户需求的提高和设计趋势的发展&#xff0c;它…

vue2的diff算法

Vue2 的虚拟 DOM diff 算法是一种高效的算法&#xff0c;用于比较新旧两个虚拟 DOM 树&#xff0c;找出差异并更新到真实 DOM 上。这个算法的核心在于尽量减少不必要的 DOM 操作&#xff0c;提高性能。 虚拟dom&#xff1a;把DOM数据化&#xff0c;先通过不断地操作数据&#…

如何在手机端跑大模型?

最近新入手了一台 arm 开发板&#xff0c;内置安装了 Android 13 系统。 昨天把网络问题给解决了&#xff1a;安卓连接 WIFI 但无法上网&#xff1f;盘点踩过的那些坑 今日分享&#xff0c;继续带大家实操&#xff1a;如何把大模型&#xff08;LLM&#xff09;部署到移动端&a…

文章资讯职场话题网站源码整站资源自带2000+数据

介绍&#xff1a; 数据有点多&#xff0c;数据资源包比较大&#xff0c;压缩后还有250m左右。值钱的是数据&#xff0c;网站上传后直接可用&#xff0c;爽飞了 环境&#xff1a;NGINX1.18 mysql5.6 php7.2 代码下载

JUC学习笔记(三)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 八、共享模型之工具--JUC8.1 AQS 原理1. 概述2 实现不可重入锁自定义同步器自定义锁 3.心得起源目标设计1) state 设计2&#xff09;阻塞恢复设计3&#xff09;队列…

学习笔记 韩顺平 零基础30天学会Java(2024.9.16)

P563 自定义泛型方法 当调用方法时&#xff0c;要传入参数&#xff0c;因为当传入参数时&#xff0c;编译器就可以确定泛型代表的类型 泛型方法和方法使用了泛型是不一样的 泛型方法可以使用类声明的泛型&#xff0c;也可以使用自己的泛型 P564 泛型方法练习 P565 泛型的继承和…

Python编码系列—Python适配器模式:无缝集成的桥梁

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…

二叉树OJ题——另一棵树的子树

文章目录 一、题目链接二、解题思路三、解题代码 一、题目链接 另一棵树的子树 题目描述&#xff1a;判断当前树A是否是树B的子树。 二、解题思路 时间复杂度&#xff1a;O(n*m) 三、解题代码

Learn ComputeShader 15 Grass

1.Using Blender to create a single grass clump 首先blender与unity的坐标轴不同&#xff0c;z轴向上&#xff0c;不是y轴 通过小键盘的数字键可以快速切换视图&#xff0c;选中物体以后按下小键盘的点可以将物体聚焦于屏幕中心 首先我们创建一个平面&#xff0c;宽度为0.2…

AI替代插画师跟设计师?不用焦虑!

一个固定的工作流&#xff0c; 一个训练好的lora模型 输入一段提示词 二三十秒的时间&#xff0c;就能生成一张精致美观有韵味的中秋国风插画 这张不喜欢&#xff0c;改下提示词重新生成一张不一样的。还是二十几秒 同样的插画&#xff0c;你用手绘&#xff0c;从起稿到上…

大数据新视界 --大数据大厂之MongoDB与大数据:灵活文档数据库的应用场景

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

【设计模式-外观】

这里写自定义目录标题 定义UML图角色作用代码使用场景 定义 为子系统中一组相关接口提供一致界面&#xff0c;定义一个高级接口&#xff0c;使得子系统更加容易使用。 UML图 角色作用 外观&#xff08;Facade&#xff09;角色&#xff1a;这是外观模式的核心&#xff0c;它知…

MongoDB的详细安装教程

6、MongoDB安装 6.1 为什么使用MongoDB 性能好大规模数据存储&#xff08;可拓展性&#xff09;可靠安全&#xff08;本地复制、自动故障转移&#xff09;方便存储复杂数据结构 6.2 下载安装 【1】下载地址&#xff0c;这里下载的是5.0版本的&#xff0c;否则配置环境变量之…

【电路笔记】-差分运算放大器

差分运算放大器 文章目录 差分运算放大器1、概述2、差分运算放大器表示2.1 差分模式2.2 减法器模式3、差分放大器示例3.1 相关电阻3.2 惠斯通桥3.3 光/温度检测4、仪表放大器5、总结1、概述 在之前的文章中,我们讨论了反相运算放大器和同相运算放大器,我们考虑了在运算放大器…

revisiting拉普拉斯模板

二维向量的二阶微分是Hessian矩阵&#xff0c;拉普拉斯算子是将两个独立的二阶微分求和&#xff0c;对二阶微分的近似。 我不认同冈萨雷斯的8邻域拉普拉斯模板。 MATLAB图像处理工具箱中fspecial函数’laplacian’参数给的拉普拉斯模板&#xff1a; 对于数字滤波器&#xff…

中秋前夕-我居然使用技术来鞭策兄弟

中秋前夕-我居然使用技术来鞭策兄弟 前言 最近在带领一些小伙伴在完成功能&#xff0c;因为人数不少&#xff0c;那么我们如何统计大家有没有摸鱼偷懒呢&#xff1f; 聪明的朋友们可以想到&#xff0c;利用git的提交记录统计。 因为git提交时&#xff0c;会给我们带上一些关…

高德2.0 多边形覆盖物无法选中编辑

多边形覆盖物无法选中编辑。先检查一下数据的类型得是<number[]>,里面是字符串的虽然显示没问题&#xff0c;但是不能选中编辑。 &#xff08;在项目中排查了加载时机&#xff0c;事件监听…等等种种原因&#xff0c;就是没发现问题。突然想到可能是数据就有问题&#xf…

ROS组合导航笔记:融合传感器数据

使用机器人定位包&#xff08;robot_localization package&#xff09;来合并来自不同传感器的数据&#xff0c;以改进机器人定位时的姿态估计。 基本概念 在现实生活中操作机器人时&#xff0c;有时我们需要处理不够准确的传感器数据。如果我们想要实现机器人的高精度定位&am…

初探全同态加密1 —— FHE的定义与历史回顾

文章目录 一、加密体系1、什么是加密体系2、加密体系的属性 Properties 二、同态加密&#xff1a;偶然的特殊性质三、同态加密体系的分类四、部分同态加密 Partially Homomorphic Encryption1、加法同态加密算法 —— ElGamal 加密算法1.1、ElGamal 的大致步骤1.2、ElGamal 的加…

vue3+vite项目中使用阿里图标库(svg)图标

前端项目中有很多地方会用到小图标&#xff0c;阿里的 iconfont 是一个不错的选择&#xff0c;同时&#xff0c; 它上面的 svg 矢量图标占用资源更少加载更快是一个不错的选择&#xff0c; 下面我们就来说一说&#xff0c;项目中如何来使用 svg 图标 安装插件 vite-plugin-svg…