C++进阶:多态

news2025/1/11 8:18:13

✨✨所属专栏:C++✨✨

✨✨作者主页:嶔某✨✨

 多态的概念

多态(polymorphism)的概念:通俗来说,就是多种形态。多态分为编译时多态(静态多态)和运⾏时多态(动态多态),这⾥我们重点讲运⾏时多态。

编译时多态(静态多态)主要就是我们前⾯讲的函数重载和函数模板,他们传不同类型的参数就可以调⽤不同的函数,通过参数不同达到多种形态,之所以叫编译时多态,是因为他们实参传给形参的参数匹配是在编译时完成的,我们把编译时⼀般归为静态,运⾏时归为动态。

运⾏时多态,具体点就是去完成某个⾏为(函数),可以传不同的对象就会完成不同的⾏为,就达到多种形态。⽐如买票这个⾏为,当普通⼈买票时,是全价买票;学⽣买票时,是优惠买票(5折或75折);军⼈买票时是优先买票。再⽐如,同样是动物叫的⼀个⾏为(函数),传猫对象过去,就是“(>^ω^<) 喵”,传狗对象过去,就是"汪汪"。

多态的定义和实现

多态是⼀个继承关系的下的类对象,去调⽤同⼀函数,产⽣了不同的⾏为。⽐如Student继承了 Person。Person对象买票全价,Student对象优惠买票。

要实现多态效果,第⼀必须是基类的指针或引⽤(调用函数),因为只有基类的指针或引⽤才能既指向派⽣类对象;(被调⽤的函数必须是虚函数

第⼆派⽣类必须对基类的虚函数重写/覆盖,重写或者覆盖了,派⽣类才能有不同的函数,多态的不同形态效果才能达到。

虚函数

类成员函数前⾯加virtual修饰,那么这个成员函数被称为虚函数。注意⾮成员函数不能加virtual修 饰。

class Person
{
public: virtual void BuyTicket()
{
	cout << "买票-全价" << endl;
}
};

虚函数的重写/覆盖

虚函数的重写/覆盖:派⽣类中有⼀个跟基类完全相同的虚函数(即派⽣类虚函数与基类虚函数的返回值 类型、函数名字、参数列表完全相同),称派⽣类的虚函数重写了基类的虚函数。

注意:在重写基类虚函数时,派⽣类的虚函数在不加virtual关键字时,虽然也可以构成重写(因为继承 后基类的虚函数被继承下来了在派⽣类依旧保持虚函数属性),但是该种写法不是很规范,不建议这样使⽤,不过在许多选择题中,经常会故意买这个坑,让你判断是否构成多态。

using namespace std;
class Person {
public:
	virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
	virtual void BuyTicket() { cout << "买票-打折" << endl; }
};
void Func(Person* ptr)
{
	// 这⾥可以看到虽然都是Person指针Ptr在调⽤BuyTicket
	// 但是跟ptr没关系,⽽是由ptr指向的对象决定的。
	ptr->BuyTicket();
}
int main()
{
	Person ps;
	Student st;
	Func(&ps);
	Func(&st);
	return 0;
}

 一个选择题:

以下程序输出结果是什么()

A: A->0  B: B->1  C: A->1  D: B->0  E: 编译出错  F: 以上都不正确

class A
{
public:
	virtual void func(int val = 1) { std::cout << "A->" << val << std::endl; }
	virtual void test() { func(); }
};
class B : public A
{
public:
	void func(int val = 0) { std::cout << "B->" << val << std::endl; }
};
int main(int argc, char* argv[])
{
	B* p = new B;
	p->test();
	return 0;
}

解析:

通过p调用test(),test()内部再调用func(),这里满足多态的条件,p指向的对象是B类型,所以调用B类型中重写的func()。但是这里有一个问题:缺省参数用谁的?因为缺省参数的值在编译时根据函数的声明类型确定的,所以认为这里先初始化父类部分,缺省参数为1。答案为B。

协变

派⽣类重写基类虚函数时,与基类虚函数返回值类型不同。即基类虚函数返回基类对象的指针或者引⽤,派⽣类虚函数返回派⽣类对象的指针或者引⽤时,称为协变。协变的实际意义并不⼤,所以我们 了解⼀下即可。

class A {};
class B : public A {};
class Person {
public:
	virtual A* BuyTicket()
	{
		cout << "买票-全价" << endl;
		return nullptr;
	}
};
class Student : public Person {
public:
	virtual B* BuyTicket()
	{
		cout << "买票-打折" << endl;
		return nullptr;
	}
};
void Func(Person* ptr)
{
	ptr->BuyTicket();
}
int main()
{
	Person ps;
	Student st;
	Func(&ps);
	Func(&st);
	return 0;
}

析构函数的重写 

基类的析构函数为虚函数,此时派⽣类析构函数只要定义,⽆论是否加virtual关键字,都与基类的析构函数构成重写,虽然基类与派⽣类析构函数名字不同看起来不符合重写的规则,实际上编译器对析构函数的名称做了特殊处理,编译后析构函数的名称统⼀处理成destructor,所以基类的析构函数加了vialtual修饰,派⽣类的析构函数就构成重写。

下⾯的代码我们可以看到,如果~A(),不加virtual,那么delete p2时只调⽤的A的析构函数,没有调⽤B的析构函数,就会导致内存泄漏问题,因为~B()中在释放资源。

注意:这个问题⾯试中经常考察,⼤家⼀定要结合类似下⾯的样例才能讲清楚,为什么基类中的析构函数建议设计为虚函数。

class A
{
public:
	virtual ~A()
	{
		cout << "~A()" << endl;
	}
};
class B : public A {
public:
	~B()
	{
		cout << "~B()->delete:" << _p << endl;
		delete _p;
	}
protected:
	int* _p = new int[10];
};
// 只有派⽣类Student的析构函数重写了Person的析构函数,下⾯的delete对象调⽤析构函数,
// 才能构成多态,才能保证p1和p2指向的对象正确的调⽤析构函数。
int main()
{
	A* p1 = new A;
	A* p2 = new B;
	delete p1;
	delete p2;
	return 0;
}

override 和 final关键字

从上⾯可以看出,C++对函数重写的要求⽐较严格,但是有些情况下由于疏忽,⽐如函数名写错参数写错等导致⽆法构成重写,⽽这种错误在编译期间是不会报出的,只有在程序运⾏时没有得到预期结果才来debug会得不偿失,因此C++11提供了override,可以帮助⽤⼾检测是否重写。如果我们不想让派⽣类重写这个虚函数,那么可以⽤final去修饰。

// error C3668: “Benz::Drive”: 包含重写说明符“override”的⽅法没有重写任何基类⽅法
class Car {
public:
	virtual void Dirve()
	{}
};
class Benz :public Car {
public:
	virtual void Drive() override { cout << "Benz-舒适" << endl; }
};
int main()
{
	return 0;
}

注意:Dirve和Drive 

// error C3248: “Car::Drive”: 声明为“final”的函数⽆法被“Benz::Drive”重写
class Car
{
public:
	virtual void Drive() final {}
};
class Benz :public Car
{
public:
	virtual void Drive() { cout << "Benz-舒适" << endl; }
};
int main()
{
	return 0;
}

 重载/重写/隐藏的对⽐

纯虚函数和抽象类 

在虚函数的后⾯写上 = 0 ,则这个函数为纯虚函数,纯虚函数不需要定义实现(实现没啥意义因为要被派⽣类重写,但是语法上可以实现),只要声明即可。包含纯虚函数的类(哪怕只有一个类里面只有一个虚函数)叫做抽象类,抽象类不能实例化出对象,如果派⽣类继承后不重写纯虚函数,那么派⽣类也是抽象类。纯虚函数某种程度上强制了 派⽣类重写虚函数,因为不重写实例化不出对象。

class Car
{
public:
	virtual void Drive() = 0;
};
class Benz :public Car
{
public:
	virtual void Drive()
	{
		cout << "Benz-舒适" << endl;
	}
};
class BMW :public Car
{
public:
	virtual void Drive()
	{
		cout << "BMW-操控" << endl;
	}
};
int main()
{
	// 编译报错:error C2259: “Car”: ⽆法实例化抽象类
	Car car;
	Car* pBenz = new Benz;
	pBenz->Drive();
	Car* pBMW = new BMW;
	pBMW->Drive();
	return 0;
}

多态的原理 

虚函数表指针

含有虚函数的类中除了成员变量,还多⼀个__vfptr放在对象的前⾯(注意有些平台可能会放到对象的最后⾯,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代表function)。⼀个含有虚函数的类中都⾄少都有⼀个虚函数表指针,因为⼀个类所有虚函数的地址要 被放到这个类对象的虚函数表中,虚函数表也简称虚表。

多态是如何实现的

class Person {
public:
	virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
	virtual void BuyTicket() { cout << "买票-打折" << endl; }
};
class Soldier : public Person {
public:
	virtual void BuyTicket() { cout << "买票-优先" << endl; }
};
void Func(Person* ptr)
{
	// 这⾥可以看到虽然都是Person指针Ptr在调⽤BuyTicket
	// 但是跟ptr没关系,⽽是由ptr指向的对象决定的。
	ptr->BuyTicket();
}
int main()
{
	// 其次多态不仅仅发⽣在派⽣类对象之间,多个派⽣类继承基类,重写虚函数后
	// 多态也会发⽣在多个派⽣类之间。
	Person ps;
	Student st;
	Soldier sr;
	Func(&ps);
	Func(&st);
	Func(&sr);
	return 0;
}

从底层的⻆度Func函数中ptr->BuyTicket(),是如何作为ptr指向Person对象调用Person::BuyTicket, ptr指向Student对象调⽤Student::BuyTicket的呢?

通过下图我们可以看到,满⾜多态条件后,底层不再是编译时通过调⽤对象确定函数的地址,⽽是运⾏时到指向的对象的虚表中确定对应的虚函数的地址,这样就实现了指针或引⽤指向基类就调⽤基类的虚函数,指向派⽣类就调⽤派⽣类对应的虚函数。

ptr将子类中父类的部分切出来,子类对象的父类部分中有虚函数表,这个表里面存的是子类中重写父类虚函数的函数地址。这样就实现了ptr指向父类就调用父类的虚函数,指向子类就调用子类的虚函数。

动态绑定与静态绑定 

• 对不满⾜多态条件(指针或者引⽤+调⽤虚函数)的函数调⽤是在编译时绑定,也就是编译时确定调⽤函数的地址,叫做静态绑定。

• 满⾜多态条件的函数调⽤是在运⾏时绑定,也就是在运⾏时到指向对象的虚函数表中找到调⽤函数的地址,也就做动态绑定。

// ptr是指针+BuyTicket是虚函数满⾜多态条件。
// 这⾥就是动态绑定,编译在运⾏时到ptr指向对象的虚函数表中确定调⽤函数地址
ptr->BuyTicket();
00EF2001 mov eax, dword ptr[ptr]
00EF2004 mov edx, dword ptr[eax]
00EF2006 mov esi, esp
00EF2008 mov ecx, dword ptr[ptr]
00EF200B mov eax, dword ptr[edx]
00EF200D call eax
// BuyTicket不是虚函数,不满⾜多态条件。
// 这⾥就是静态绑定,编译器直接确定调⽤函数地址
ptr->BuyTicket();
00EA2C91 mov ecx, dword ptr[ptr]
00EA2C94 call Student::Student(0EA153Ch)

虚函数表

class Base {
public:
	virtual void func1() { cout << "Base::func1" << endl; }
	virtual void func2() { cout << "Base::func2" << endl; }
	void func5() { cout << "Base::func5" << endl; }
protected:
	int a = 1;
};
class Derive : public Base
{
public:
	// 重写基类的func1
	virtual void func1() { cout << "Derive::func1" << endl; }
	virtual void func3() { cout << "Derive::func1" << endl; }
	void func4() { cout << "Derive::func4" << endl; }
protected:
	int b = 2;
};
int main()
{
	Base b;
	Derive d;
	return 0;
}

• 基类对象的虚函数表中存放基类所有虚函数的地址。

• 派⽣类由两部分构成,继承下来的基类和⾃⼰的成员,⼀般情况下,继承下来的基类中有虚函数表指针,⾃⼰就不会再⽣成虚函数表指针。但是要注意的这⾥继承下来的基类部分虚函数表指针和基类对象的虚函数表指针不是同⼀个,就像基类对象的成员和派⽣类对象中的基类对象成员也独⽴的。

 

• 派⽣类中重写的基类的虚函数,基类对象中的派⽣类的虚函数表中对应的虚函数就会被覆盖成派⽣类重写的虚函数地址。

• 派⽣类的虚函数表中包含,基类的虚函数地址,派⽣类重写的虚函数地址,派⽣类⾃⼰的虚函数地址三个部分。

• 虚函数表本质是⼀个存虚函数指针的指针数组,⼀般情况这个数组最后⾯放了⼀个0x00000000标记。(这个C++并没有进⾏规定,各个编译器⾃⾏定义的,vs系列编译器会在后⾯放个0x00000000 标记,g++系列编译不会放)

• 虚函数存在哪的?虚函数和普通函数⼀样的,编译好后是⼀段指令,都是存在代码段的,只是虚函数的地址⼜存到了虚表中。

• 虚函数表存在哪的?这个问题严格说并没有标准答案C++标准并没有规定,我们写下⾯的代码可以对⽐验证⼀下。vs下是存在代码段(常量区)

多继承情况下的虚表 

在 C++ 多继承的情况下,子类对象包含多个父类子对象,当子类重写了某个虚函数时,通常只将其放到第一个父类的虚表后面,有以下原因:

一、多继承下的内存布局

  • 在多继承中,子类对象的内存布局是按照继承顺序依次排列各个父类子对象。
  • 例如,有类A、类B和类C继承自AB,对象c的内存布局大致为:首先是A的子对象部分,接着是B的子对象部分,最后是C自己独有的部分。

二、虚函数表的作用和调用机制

  1. 虚函数表的作用:

    • 虚函数表是实现多态的关键机制。每个包含虚函数的类都有一个虚函数表,表中存储了指向该类虚函数的指针。
    • 当通过基类指针或引用调用虚函数时,实际调用的是根据对象的实际类型在虚函数表中对应的函数。
  2. 调用机制与虚表位置:

    • 当通过指向子类对象的父类指针调用虚函数时,编译器会根据指针的静态类型确定从哪个虚函数表开始查找。
    • 如果子类重写的虚函数被放到多个父类的虚表中,会导致混乱和不确定性。例如,如果子类重写了父类A和父类B中的同名虚函数,而这两个函数都被放到了各自父类的虚表中,那么当通过不同的父类指针调用时,无法确定应该调用哪个版本的函数。
    • 为了避免这种混乱,通常只将子类重写的虚函数放到第一个父类的虚表后面,这样在通过第一个父类指针调用时,可以正确地调用到子类重写的版本。而通过其他父类指针调用时,由于子类重写的函数不在这些父类的虚表中,会调用父类自己的版本或者根据继承关系进行其他的查找机制,但不会出现多个版本的混乱情况。
class A1
{
public:
	virtual void fun1()
	{
		cout << "A1::void fun1()";
	}
private:
	int a1 = 1;

};
class A2
{
public:
	virtual void fun1()
	{
		cout << "A2::void fun1()";
	}
private:
	int a2 = 2;

};
class B :public A1,A2
{
public:
	virtual void fun1()
	{
		cout << "B::void fun1()";
	}
	virtual void fun2()
	{
		cout << "B::void fun2()";
	}
private:
	int b = 3;
};

int main()
{
	A1 a1;
	A2 a2;
	B b;
	return 0;
}

综上所述,多继承情况下,子类自己的虚函数只放到第一个父类的虚表后面,是为了保证多继承下虚函数调用的确定性和一致性,避免混乱和错误的调用。存储在其他父类的虚表中不仅没有必要,还会增加复杂性和不确定性,所以通常不这么做。

 

 本期博客到这里就结束了,如果有什么错误,欢迎指出,如果对你有帮助,请点个赞,谢谢!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2138055.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一口气学完docker【入门到精通】

一、容器 1、什么是容器 容器是一种轻量级的虚拟化技术&#xff0c;它为应用程序提供了一种隔离的运行环境。在操作系统级别上实现&#xff0c;容器将应用程序及其所有依赖项&#xff08;包括库、配置文件等&#xff09;封装在一起&#xff0c;形成一个独立的标准单元。 每个…

[数据结构]二叉搜索树

今天我们来学习一下新的数据结构&#xff0c;二叉搜索树&#xff0c;这个结构比较简单&#xff0c;是一个铺垫式的结构&#xff0c;为之后的平衡二叉树&#xff0c;AVL树以及红黑树做一个知识基础&#xff0c;我们将从概念到实现具体的介绍二叉搜索树。 目录 Ⅰ.二叉搜索树的…

比亚迪电动汽车的市场占比太惊人

比亚迪&#xff08;BYD&#xff09;在中国电动汽车市场的崛起无疑是近年来最显著的现象之一。凭借其强大的技术整合、丰富的产品线以及价格优势&#xff0c;比亚迪已经迅速成为中国乃至全球电动汽车领域的领导者。在2024年&#xff0c;比亚迪的市场份额在中国汽车市场达到了惊人…

什么是上拉,下拉?

上拉就是将引脚通过一个电阻连接到电源&#xff0c;作用&#xff1a;1.使IO口的不确定电平稳定在高点平&#xff0c;2、为了增加IO口拉电流的能力。 下拉就是将引脚通过一个电阻与GND相连&#xff0c;作用&#xff1a;1.从器件输出电流 2.当IO口为输入状态时&#xff0c;引脚的…

Redhat 8,9系(复刻系列) 一键部署Oracle23ai rpm

Oracle23ai前言 Oracle Database 23ai Free 让您可以充分体验 Oracle Database 的能力,世界各地的企业都依赖它来处理关键任务工作负载。 Oracle Database Free 的资源限制为 2 个 CPU(前台进程)、2 GB 的 RAM 和 12 GB 的磁盘用户数据。该软件包不仅易于使用,还可轻松下载…

适合学生党开学买的蓝牙耳机?分享开放式耳机排行榜前十名

学生党开学想买耳机的话&#xff0c;我觉得比较适合入手开放式耳机&#xff0c;因为这类耳机佩戴舒适度高&#xff0c;长时间使用也不会感到不适或疲劳&#xff0c;同时保持耳道干爽透气&#xff0c;更加健康卫生&#xff0c;还能提供自然、开阔的音场&#xff0c;音质表现优秀…

详解c++多态---上

virtual关键字 1.可以修饰原函数&#xff0c;为了完成虚函数的重写&#xff0c;满足多态的条件之一。 class Person { public:virtual void BuyTicket() { cout << "买票-全价" << endl; } };class Student : public Person { public:virtual void Buy…

NarratoAI利用AI大模型,一键解说并剪辑视频

测试视频: 字幕/配乐后期添加的,视频由NarratoAI自动生成的 雪迷宫-NarratoAI利用AI大模型剪辑解说视频测试 WIN整合包 下载链接&#xff1a;https://pan.quark.cn/s/8f54ef99e3fb 使用前先更新&#xff0c;运行update.bat Gemini API Key 访问 https://aistudio.google.c…

性能测试-jmeter的控制器(十六)

一、if控制器 需求&#xff1a;使用“用户自定义变量”定义name变量&#xff0c;值可以是“baidu”或“itcast”,使用变量值&#xff0c;控制是否访问对应网站。 1、步骤&#xff1a; 在测试计划中添加用户定义的变量name,取值可为baidu或itcast添加两个http请求&#xff1a…

Docker突然宣布:涨价80%

从11月15日起&#xff0c;Docker的付费订阅中Pro和Team的价格都将大幅上调&#xff1a;Pro从原来的5美元每月激增到9美元每月&#xff0c;直接涨了80%&#xff1b;而Team也从之前的9美元每月来到15美元每月&#xff0c;涨价66.7%。只有Business保持此前的24美元每月不变。 同时…

S32K3 工具篇6:如何将RTD EB工程导入到S32DS

S32K3 工具篇6&#xff1a;如何将RTD EB工程导入到S32DS 1. MCAL_Plugins->Link Source Resource Filters2. Includes3. Preprocessor4. Linker5. optimization6. main.c 这个主题实际上&#xff0c;之前已经有多人写过&#xff0c;并且写的很好&#xff0c;只是实际操作中&…

基础物理-直线运动2

2-1 位置、位移和平均速度 位置与位移 为了确定物体的位置&#xff0c;通常需要相对于某个参考点来测量&#xff0c;这个参考点通常是某个坐标轴的原点&#xff08;或零点&#xff09;&#xff0c;如图 2-1 中的 x 轴。坐标轴的正方向是坐标增大的方向&#xff0c;在图 2-1 中…

微信h5跳转小程序wx-open-launch-weapp开放标签不显示(已解决)

前言&#xff1a;  前几天成功对接了跳转第三方小程序的功能&#xff0c;今天有个页面有需要对接。但是奇怪的是用的和上次一模一样的配置&#xff0c;但就是死活不显示wx-open-launch-weapp这个开放标签的按钮&#xff0c;看不到任何效果&#xff08;这个问题真的是让人欲哭无…

Docker基础命令汇总,小白必备

1、docker信息概览 docker info容器的数量 在运行的容器 暂停状态的容器 停止状态的容器 容器的镜像数量 系统的内核版本 操作系统centos 7 操作系统类型 linux 系统架构为64位 系统的cpu核心2个 总内存1.777G docker镜像仓库地址 南京大学 中国科技大 网易 百度云 腾讯云 …

C++入门基础知识69(高级)——【关于C++ 动态内存】

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于C 异常处理的相关内容&#xff01; 目录…

【AWDP】 AWDP 赛制详解应对方法赛题实践 量大管饱

文章首发于【先知社区】&#xff1a;https://xz.aliyun.com/t/15535 一、AWDP概述 AWDP是什么 AWDP是一种综合考核参赛团队攻击、防御技术能力、即时策略的攻防兼备比赛模式。每个参赛队互为攻击方和防守方&#xff0c;充分体现比赛的实战性、实时性和对抗性&#xff0c;对参…

恢弘集团SRM采购数字化项目成功上线,企企通助推新材料企业发展新质生产力

近日&#xff0c;企企通携手恢弘集团有限公司&#xff08;以下简称“恢弘集团”&#xff09;打造的一站式数字化采购管理平台正式上线。基于该平台&#xff0c;恢弘集团全流程全周期的数字化采购管理体系进一步升级&#xff0c;在推动企业提高效率的同时&#xff0c;也将形成新…

工作流activiti笔记(四)审批人设置

单人 方式一&#xff1a;写死Assignee 画流程图时填写Assignee&#xff0c;启动流程自动会为每个环节分配好审批人。 方式二&#xff1a;写死变量 ${xx}&#xff0c;然后在启动流程时设置变量。 与方式一一样&#xff0c;启动流程时分配好&#xff0c;只不过它是以变量的形式…

Java抽象类和接口的学习了解

目录 1. 抽象类 1.1 抽象类概念 1.2例子 1.3 抽象类语法 1.被 abstract 修饰的类--抽象类 2.抽象类中被 abstract 修饰的方法--抽象方法&#xff0c;该方法不用给出具体的实现体 3.当一个类中含有抽象方法时&#xff0c;该类必须要abstract修饰 4.抽象类也是类&#xff…