RS-485自收发电路
RS-485标准在工业控制、电力通讯、智能仪表等领域中使用广泛。
信号自收发电路1:利用74HC14芯片
信号自收发电路我们采用74HC14芯片,利用它的施密特波形翻转性能来控制RE、DE引脚,以实现信号的自收发。其电路连接如下图:
如图所示,MCU的发送信号经过施密特触发器反向后输给DE和RE脚,发送数据引脚TxD接地。
当有高电平信号发送时,经反向变为低电平信号,DE/RE引脚输入为低电平,使发送驱动器禁止,总线为高阻状态,此时由A、B总线上的上拉电阻产生高电平输出。
当有低电平信号发送时,经反向变为高电平信号,DE/RE引脚输入为高电平,使发送驱动器工作,由于TxD引脚端接地,为低电平,这样就将低电平发送至总线。
本参考设计仅为实现RS-485接口的自收发功能,在实际应用中,应根据使用情况作出相应的修改。此收发电路也有不足之处,当在连续发送高电平时,ADM2483的DE/RE引脚处于接收状态,所以,此时的发送端和接收端都处于接收状态,这时的总线是空闲状态,是允许各节点发送数据的,因此一般在主从式的网络结构中采用此方法。
信号自收发电路2:改进利用74HC14芯片
采用74HC14和RC电路实现,此电路是对单纯使用74HC14实现自收发电路的改进,增加了RC充放电电路,减少总线处于空闲状态的时间,电路如下图:
当TxD信号为高电平,则通过电阻为电容充电,其充电时间为T,该时间应设置为串口发送一个字节所需要的时间,由R,C参数来确定。当电容充满后,则DE/RE为低电平,使ADM2483处于接收状态。
在发送数据时,TxD起始位产生第一个下降沿,使电容经过二极管进行快速放电,使DE/RE很快变为高电平,ADM2483处于发送状态。在发送过程中, 当TxD变成高电平时,电容通过电阻缓慢充电,使DE/RE仍然保持在发送状态,可有效吸收总线上的反射信号。当RC充电结束,使DE/RE转入接受状态时, 总线上的上拉、下拉电阻将维持TxD高电平的发送状态,直至整个bit发送结束。
当数据发送完毕以后,TxD变为高电平,RC又开始充电,即经T时间后,ADM2483又转换为接收状态。
信号自收发电路3: 利用三极管反向原理实现
电路如下图:
当不发送数据时,TxD信号为高电平,经V1反向后使ADM2483处于接收状态。
当发送数据时,TxD为高时,经V1反向,使发送驱动器禁止,总线为高阻状态,此时由A、B总线上的上拉电阻产生高电平输出。TxD为低时,经V1反向,使发送驱动器工作,由于TxD引脚端接地,为低电平,这样就将低电平发送至总线。
采用这种电路时,需要程序保证不同时进行接收和发送的操作。
信号自收发电路3: 利用555定时器
其原理于以上电路类似,电路图如下:
555定时器为边沿触发,当TxD发送高电平时,555定时器OUT引脚输出低电平,当TxD发送低电平时,555定时器OUT引脚输出高电平,当TxD转为高电平时,OUT引脚输出的高电平状态会延迟一会再转入低电平,以确保发送数据的正确性。
声明
以上所有电路均为参考电路,为电路设计者提供思路,在实际使用中请再次验证,以确保电路的稳定及不会对系统造成破坏。对于电路损坏造成的损失,概不负责。