【C++】vector常见用法

news2024/9/20 18:27:40

🔥个人主页🔥:孤寂大仙V
🌈收录专栏🌈:C++从小白到高手
🌹往期回顾🌹:[C++]string类
🔖 流水不争,争的是滔滔不息。

文章目录

  • 一、vector的介绍
    • vector的主要特点
  • 二、vector的使用
    • vector的定义
    • vector迭代器的使用
    • vector的空间增长问题
    • vector的增删查改
  • 三、vector迭代器失效问题
    • 对于vector可能导致迭代器失效的原因


一、vector的介绍

在C++中,vector是标准模板库(STL)中的一种动态数组容器,它允许存储同一类型的元素,并能自动调整大小。这与普通数组不同,vector的大小是可以动态改变的,即可以根据需要自动扩展或缩小。

vector的主要特点

  1. 动态大小:不像数组需要固定的大小,vector可以动态增加或减少元素个数。当新元素被添加时,它会自动调整底层存储容量。
  2. 顺序容器:vector中的元素按插入顺序存储,支持通过下标访问和修改元素,类似于数组。
  3. 自动管理内存:vector会自动管理内存分配和释放,因此用户不必担心手动分配内存,避免了使用普通数组时可能出现的内存泄漏问题。
  4. 灵活的插入和删除操作:vector可以在末尾进行高效的插入和删除操作。虽然在中间插入和删除元素的效率较低,但相比普通数组仍有较多的灵活性。

二、vector的使用

vector的定义

构造函数声明
在这里插入图片描述
在这里插入图片描述

vector<int> v1;//无参构造

在这里插入图片描述

vector<int> v2(10,1);//构造并初始化10个1

在这里插入图片描述

vector<int> v3(10, 2);
vector<int> v4 = v3;//拷贝构造

在这里插入图片描述

vector<int> v4(10, 3);
vector<int> v5(v4.begin(), v4.end());
paint_vector(v5);//使用迭代器进行初始化构造

在这里插入图片描述

vector迭代器的使用

在这里插入图片描述
在这里插入图片描述

void paint_vector2(vector<int>& v)
{
	auto it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}
void test5()
{
	vector<int> v5;
	v5.push_back(1);
	v5.push_back(2);
	v5.push_back(3);
	v5.push_back(4);
	v5.push_back(5);
	paint_vector2(v5);
}
int main()
{
	test5();
	return 0;
}

用vector创建一个容器,在里面放五个整形元素。打印的话用迭代器打印。begin()是获取第一个位置的数据元素,end()是获取最后一个位置的下一个位置的数据元素。
在这里插入图片描述

void paint_vector3(vector<int>& v)
{
	auto it = v.rbegin();
	while (it != v.rend())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}
void test6()
{
	vector<int> v6;
	v6.push_back(1);
	v6.push_back(2);
	v6.push_back(3);
	v6.push_back(4);
	v6.push_back(5);
	paint_vector3(v6);
}
int main()
{
	test6();
	return 0;
}

rbegin正好反了过来,rbegin获取最后一个位置,rend获取第一个位置的前一个位置。
在这里插入图片描述

vector的空间增长问题

在这里插入图片描述
在这里插入图片描述

vector<int> v7(10, 7);
cout << size(v7) << endl;//size获取数据个数

在这里插入图片描述

vector<int> v8(10, 8);
cout << v8.capacity() << endl;//获取容量大小

在这里插入图片描述

vector<int> v10(10, 10);
v10.resize(15, 5);//改变vector的size并且可以为增加的size的改变值	
paint_vector(v10);

在这里插入图片描述

vector<int> v11(10, 11);
v11.reserve(15);//一开始的capacity是10,用reserve改变capacity的容量

一开始的的capacity是10
在这里插入图片描述
经过reserve改变容量后capacity变为了15
在这里插入图片描述
capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2
倍增长的。这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是
根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代
价缺陷问题。
resize在开空间的同时还会进行初始化,影响size。

vector的增删查改

在这里插入图片描述
在这里插入图片描述

vector<int> v12;
v12.push_back(1);
v12.push_back(2);//尾插
paint_vector(v12);

在这里插入图片描述

vector<int> v13(10,1);
v13.pop_back();
v13.pop_back();//尾删
paint_vector(v13);

在这里插入图片描述

void test14()
{
	vector<int> v14;
	v14.push_back(1);
	v14.push_back(2);
	v14.push_back(3);
	v14.push_back(4);
	v14.push_back(5);
	v14.push_back(6);
	
	auto it = find(v14.begin(), v14.end(), 5);
	if (it != v14.end())
	{
		cout << *it << " ";
		++it;
	}
	else
	{
		cout << "no" << " ";
	}

}
int main()
{
	test14();
	return 0;
}

如果在vector中可以找到val,就返回我们要找的值,如果vector中没有val,返回no。
在这里插入图片描述

void test15()
{
	vector<int> v15(10,1);
	v15.insert(v15.begin()+3, 2);//在pos位置之前插入val。
	paint_vector(v15);
}
int main()
{
	test15();
	return 0;
}

在这里插入图片描述

void test16()
{
	vector<int> v16;
	v16.push_back(1);
	v16.push_back(2);
	v16.push_back(3);
	v16.push_back(4);
	v16.push_back(5);

	v16.erase(v16.begin() + 3);//删除pos位置的数据
	paint_vector(v16);
}
int main()
{
	test16();
	return 0;
}

在这里插入图片描述

void test17()
{
	vector<int> v17(5, 3);
	vector<int> v18(5, 6);

	paint_vector(v17);
	paint_vector(v18);
	swap(v17, v18);//交换两个vetor的数据空间。
	paint_vector(v18);
	paint_vector(v17);
}

int main()
{
	test17();
	return 0;
}

在这里插入图片描述

void test18()
{
	vector<int> v18;
	v18.push_back(1);
	v18.push_back(2);
	v18.push_back(3);
	v18.push_back(4);
	v18.push_back(5);

	cout<<v18[1]<<endl;
}
int main()
{
	test18();
	return 0;
}

在这里插入图片描述

三、vector迭代器失效问题

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对
指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器
底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即
如果继续使用已经失效的迭代器,程序可能会崩溃)。

对于vector可能导致迭代器失效的原因

1.会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、
assign、push_back等。

#include <iostream>
 using namespace std;
 #include <vector>
 int main()
 {
 vector<int> v{1,2,3,4,5,6};
 auto it = v.begin();
 // 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
// v.resize(100, 8);
 // reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
// v.reserve(100);
 // 插入元素期间,可能会引起扩容,而导致原空间被释放
// v.insert(v.begin(), 0);
 // v.push_back(8);
 // 给vector重新赋值,可能会引起底层容量改变
v.assign(100, 8);
 /*
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释
放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块
已经被释放的空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给
it重新赋值即可。
*/
 while(it != v.end())
 {
 cout<< *it << " " ;
 ++it;
 }
 cout<<endl;
 return 0;
 }
  1. . 指定位置元素的删除操作–erase
#include <iostream>
using namespace std;
 #include <vector>
 int main()
 {
 int a[] = { 1, 2, 3, 4 };
 vector<int> v(a, a + sizeof(a) / sizeof(int));
 // 使用find查找3所在位置的iterator
 vector<int>::iterator pos = find(v.begin(), v.end(), 3);
 // 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
 cout << *pos << endl; // 此处会导致非法访问
return 0;
 }

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理
论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end
的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素
时,vs就认为该位置迭代器失效了。

  1. 注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
 {
 vector<int> v{1,2,3,4,5};
 for(size_t i = 0; i < v.size(); ++i)
 cout << v[i] << " ";
 cout << endl;
 auto it = v.begin();
 cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
 // 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效    
v.reserve(100);
 cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
 // 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux
下不会
// 虽然可能运行,但是输出的结果是不对的
while(it != v.end())
 {
 cout << *it << " ";
 ++it;
 }
 cout << endl;
 return 0;
 }
程序输出:
1 2 3 4 5 
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
 0 2 3 4 5 409 1 2 3 4 5
 // 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
 #include <algorithm>
 int main()
 {
 vector<int> v{1,2,3,4,5};
 vector<int>::iterator it = find(v.begin(), v.end(), 3);
 v.erase(it);
 cout << *it << endl;
 while(it != v.end())
 {
 cout << *it << " ";
 ++it;
 }
 cout << endl;
 return 0;
 }
程序可以正常运行,并打印:
4
 4 5
// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
 // 此时迭代器是无效的,++it导致程序崩溃
int main()
 {
 vector<int> v{1,2,3,4,5};
 // vector<int> v{1,2,3,4,5,6};
 auto it = v.begin();
 while(it != v.end())
 {
 if(*it % 2 == 0)
 v.erase(it);
 ++it;
 }
 for(auto e : v)
 cout << e << " ";
 cout << endl;
 return 0;
 }
 ========================================================
 // 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
 [sly@VM-0-3-centos 20220114]$ ./a.out
 1 3 5 
=========================================================
 // 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp 
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
 [sly@VM-0-3-centos 20220114]$ ./a.out
 Segmentation fault

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行
结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的。

  1. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
#include <string>
 void TestString()
 {
 string s("hello");
 auto it = s.begin();
 // 放开之后代码会崩溃,因为resize到20会string会进行扩容
// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
// 后序打印时,再访问it指向的空间程序就会崩溃
//s.resize(20, '!');
 while (it != s.end())
 {
 	cout << *it;
 	++it;
 }
	cout << endl;
 	it = s.begin();
 while (it != s.end())
  {
        it = s.erase(it);
        // 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
        // it位置的迭代器就失效了
        // s.erase(it);  
        ++it;
    }
 }

迭代器失效解决办法:在使用前,对迭代器重新赋值即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2135678.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

KubeCon China 回顾|快手的 100% 资源利用率提升:从裸机迁移大规模 Redis 到 Kubernetes

大家下午好&#xff0c;我是来自 ApeCloud 的吴学强&#xff0c;非常高兴能够在 KubeCon 做分享。今天的分享由我和来自快手的刘裕惺同学共同完成&#xff0c;我们分享的主题是将大规模的 Redis 实例从裸机迁移到 Kubernetes 上来提高资源的利用率。 我们今天的议题包括几个方…

价值流与核心理论框架对比解析:企业业务架构优化的全景指南

企业架构优化中的理论框架选择 随着数字化转型和全球竞争的加剧&#xff0c;企业管理者越来越意识到优化业务流程以提升竞争力的重要性。然而&#xff0c;在众多优化方法中&#xff0c;企业如何选择最适合自己的理论框架成为一大挑战。由The Open Group发布的《价值流指南》系…

配电房监控 配电柜监测系统方案简介@卓振思众

在当今迅速发展的电力行业中&#xff0c;配电柜监测系统的作用越来越受到重视。作为配电系统的核心组件&#xff0c;配电柜不仅承担着电力分配的关键任务&#xff0c;还面临着安全性和稳定性的重要挑战。为了确保电力供应的连续性和可靠性&#xff0c;配电柜监测系统应运而生&a…

鼎捷新一代PLM 荣膺维科杯 “2023年度行业优秀产品奖”

近日&#xff0c;由中国高科技行业门户OFweek维科网主办的“全数会2024&#xff08;第五届&#xff09;中国智能制造数字化转型大会暨维科杯工业自动化及数字化行业年度评选颁奖典礼”在深圳隆重举办。这不仅是中国工业自动化及数字化行业的一大品牌盛会&#xff0c;亦是高科技…

vue2基础系列教程之todo的实现及面试高频问题

关键知识点 v2里面&#xff0c;当在同一个元素或组件上同时使用v-for和v-if,v-for的权限高于v-if v-show和v-if的区别主要有 v-if是惰性的&#xff0c;v-show是及时的v-if值为false时&#xff0c;不会生成dom,v-show不管值是true或false,都会生成dom,修改的是dom的display属性…

画图方法总结

1、画两天线段的代码 #画图 import matplotlib.pyplot as plt from matplotlib import font_manager font_path simfang.ttf # 替换为实际的字体文件路径 font_prop font_manager.FontProperties(fnamefont_path, size12) # 设置字体大小 plt.figure() plt.plot(csv_data[…

标准库、HAL库、LL库

目录 举例理解 概念理解 标准库&#xff08;Standard Peripheral Library&#xff0c;SPL&#xff09; 2. HAL库&#xff08;Hardware Abstraction Layer&#xff09; 3. LL库&#xff08;Low-Layer Library&#xff09; 总结区别 如何选择 实际应用中的结合使用 代码…

Flutter iOS混淆打包

1. Xcode配置好环境和版本号 2. Terminal输入混淆打包命令 flutter build ipa --obfuscate --split-debug-info./symbols 生成包路径&#xff1a;项目名/build/ios/archive/Runner. xcarchive 3. 将上述文件复制到Xcode下 ~/Library/Developer/Xcode/Archives 4. 打开Xcode-…

React源码学习(一):如何学习React源码

本系列源码学习&#xff0c;是基于 v16.13.1&#xff0c;v17.x与v16.x区别并不太大&#xff01; 一、如何正确的学习React源码&#xff1f; 找到Github&#xff0c;转到React仓库&#xff0c;fork / clone源码&#xff1a;React 查看Readme&#xff0c;在Documentation中有Cont…

VLAN原理学习笔记

以太网是一种基于CSMA/CD的数据网络通信技术&#xff0c;其特征是共享通信介质。当主机数目较多时会导致安全隐患、广播泛滥、性能显著下降甚至造成网络不可用。 在这种情况下出现了VLAN (Virtual Local Area Network)技术解决以上问题。 1、VLAN快速配置 Vlan:Virtual Local…

【XR】AR HUD

1. AR HUD&#xff08;head up display&#xff09;原理 目标&#xff1a; 产业链上的各大Tier1及PGU企业都在积极开发这一技术&#xff0c;许多厂家已推出LCOS样机&#xff0c;比如说水晶光电、华阳集团、瀚思通、疆程已在北京车展或去年的上海车展上展出了LCOS方案的AR-HUD样…

第一届长城杯信息安全铁人三项赛决赛 取证溯源 (复现)

前言&#xff1a; 2024铁人三项决赛应急响应 您的同事李白在运维一台部署了移动应用服务端的linux服务器时发现了异常&#xff0c;好像被黑客攻 击了。小李通过简单分析&#xff0c;发现可能是由于公司的移动应用和其服务端程序都存在安全问题导致 的。小李将当天可能与攻击相关…

(安装VMtools工具)将一个文件从主系统(windows)传送到VMware虚拟机的Linux系统中

解决问题&#xff1a;将一个文件从主系统&#xff08;windows&#xff09;传输到VMware虚拟机的AlmaLinux系统中 博主在主系统和虚拟机文件传输时发现了共享文件夹这一办法&#xff0c;发现需要安装VMtools工具&#xff0c;且网上有关VMtools的教程大多为图形化界面的操作&…

盘点那些初级软件测试面试题汇总

一、请描述如何划分缺陷与错误严重性和优先级别&#xff1f; 给软件缺陷与错误划分严重性和优先级的通用原则&#xff1a; &#xff08;1&#xff09;表示软件缺陷所造成的危害和恶劣程度。 &#xff08;2&#xff09;优先级表示修复缺陷的重要程度和次序。 严重性&#xf…

基于SpringBoot+Vue的驾校信息管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于JavaSpringBootVueMySQL的…

OpenAI o1:AI领域的“草莓”革命,华人科学家贡献卓越

最近&#xff0c;科技界的热门明星“草莓”频繁出现在大家的视线中。9月11号&#xff0c;The Information报道称&#xff1a;OpenAI计划在未来两周内推出一款更智能、更昂贵、更谨慎的AI模型&#xff01;网友们对此消息持怀疑态度&#xff0c;认为类似消息屡见不鲜&#xff0c;…

使用肘部法则确定K-Means中的k值

一 肘部法则 在K-means算法中&#xff0c;对于确定K&#xff08;簇的数目&#xff09;&#xff0c;我们经常使用肘部法则。 肘部法则是一种用于确定在k均值聚类算法中使用的质心数&#xff08;k&#xff09;的技术。 在这种方法中&#xff0c;为了确定k值&#xff0c;我们连续…

springboot修改组件扫描包位置

步骤很详细&#xff0c;直接上教程 问题分析 默认情况下组件扫描包范围为启动类所在包及其子包 解决方法 我们只需要在启动类上面加个注解配置扫描范围 效果演示 温馨提示 非必要不建议修改&#xff0c;按规范创建项目结构一般不会出现这个问题

此mac无法连接Apple媒体服务,因为“”出现问题。

出现问题&#xff1a; 这是因为mac登陆过别人的appId下载过软件&#xff0c;但是没有完全退出登陆 解决 打开偏好设置&#xff0c;点击头像&#xff0c;点击媒体与已购项目&#xff0c;能看到弹框内AppleID登陆的应用&#xff0c;打开对应的那个应用&#xff0c;我这里是音…

对抗性EM用于变分深度学习:在低剂量PET和低剂量CT中的半监督图像质量增强应用|文献速递--Transformer架构在医学影像分析中的应用

Title 题目 Adversarial EM for variational deep learning: Application to semi-supervised image quality enhancement in low-dose PET and low-dose CT 对抗性EM用于变分深度学习&#xff1a;在低剂量PET和低剂量CT中的半监督图像质量增强应用 01 文献速递介绍 医学影…