Redis简介、常用命令及优化

news2024/9/20 8:00:37

文章目录

  • 一、关系数据库​​与非关系型数据库概述
    • 1. 关系型数据库
    • 2. 非关系型数据库
    • 3.关系数据库与非关系型数据库区别
  • 二、Redis简介
    • 1.Redis的单线程模式
    • 2.Redis 优点
    • 3.Redis 缺点
  • 三、安装redis
  • 四、Redis 命令工具
  • 五、Redis 数据库常用命令
  • 六、Redis 多数据库常用命令
  • 七、Redis 高可用
  • 八、Redis 持久化
    • 1.Redis 提供两种方式进行持久化
    • 2.RDB 持久化
      • 1.触发条件
      • 2.执行流程
      • 3. 启动时加载
    • 3.AOF 持久化
      • 1.开启AOF
      • 2.执行流程
      • 3. 启动时加载
  • 十.RDB和AOF的优缺点
  • 十一.Redis 性能管理
    • 1.内存碎片率
    • 2.内存使用率
    • 3.内回收key

一、关系数据库​​与非关系型数据库概述

1. 关系型数据库

关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上,一般面向于记录。

SQL 语句(标准数据查询语言)就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作。

主流的关系型数据库包括 Oracle、MySQL、SQL Server、Microsoft Access、DB2 等。

优点:

① 易于维护:都是使用表结构,格式一致

② 使用方便:SQL语言通用,可用于复杂查询

③ 支持复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询

缺点:

① 读写性能比较差,尤其是海量数据的高效率读写

② 固定的表结构,灵活度稍欠

③ 对于高并发读写的需求,传统关系型数据库节点的硬盘I/O是一个很大的瓶颈

2. 非关系型数据库

NoSQL(NoSQL = Not Only SQL ),意思是“不仅仅是 SQL”,是非关系型数据库的总称。

除了主流的关系型数据库外的数据库,都认为是非关系型。

主流的 NoSQL 数据库有 Redis、MongBD、Hbase、CouhDB 等。

3.关系数据库与非关系型数据库区别

数据存储方式不同
关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。

与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。

扩展方式不同
SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。

要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。

而NoSQL数据库是横向扩展的。因为非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。

对事务性的支持不同
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。

虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。

二、Redis简介

Redis 基于内存运行并支持持久化,采用key-value(键值对)的存储形式,是目前分布式架构中不可或缺的一环。

1.Redis的单线程模式

Redis服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降;若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。即:在实际生产环境中,需要根据实际的需求来决定开启多少个Redis进程。若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若 CPU 资源比较紧张,采用单进程即可。

2.Redis 优点

具有极高的数据读写速度:数据读取的速度最高可达到 110000 次/s,数据写入速度最高可达到 81000 次/s。
支持丰富的数据类型:支持 key-value、Strings字符串(可以为整型、浮点型和字符串,通称为元素)、Lists列表(实现队列,元素不唯一,先入先出原则)、Hashes:hash散列值(hash的key必须是唯一的)、Sets集合(各不相同的元素)及 Ordered Sets有序集合 等数据类型操作。
支持数据的持久化:可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。
原子性:Redis 所有操作都是原子性的。
支持数据备份:即 master-salve 模式的数据备份。

3.Redis 缺点

数据容量收到物理内存的限制,不能用于海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上

三、安装redis

yum install -y gcc gcc-c++ make
tar zxvf redis-5.0.7.tar.gz -C /opt/
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install
cd /opt/redis-5.0.7/utils
./install_server.sh

......					#一直回车(四个回车)
Please select the redis executable path [/usr/local/bin/redis-server] 
# 输入
/usr/local/redis/bin/redis-server 

在这里插入图片描述
Selected config:
Port : 6379 #默认侦听端口为6379
Config file : /etc/redis/6379.conf #配置文件路径
Log file : /var/log/redis_6379.log #日志文件路径
Data dir : /var/lib/redis/6379 #数据文件路径
Executable : /usr/local/redis/bin/redis-server #可执行文件路径
Cli Executable : /usr/local/bin/redis-cli #客户端命令工具

ln -s /usr/local/redis/bin/* /usr/local/bin/
/etc/init.d/redis_6379 start
netstat -natp | grep redis

/etc/init.d/redis_6379 stop				#停止
/etc/init.d/redis_6379 start			#启动
/etc/init.d/redis_6379 restart			#重启
/etc/init.d/redis_6379 status			#状态

在这里插入图片描述4.

vim /etc/redis/6379.conf

bind 127.0.0.1 192.168.44.10				#70行,添加 监听的主机地址(允许192.168.44.10访问reids)
port 6379									#93行,Redis默认的监听端口
daemonize yes								#137行,启用守护进程
pidfile /var/run/redis_6379.pid				#159行,指定 PID 文件
loglevel notice								#167行,日志级别
logfile /var/log/redis_6379.log				#172行,指定日志文件

/etc/init.d/redis_6379 restart

四、Redis 命令工具

redis-server:用于启动 Redis 的工具
redis-benchmark:用于检测 Redis 在本机的运行效率
redis-check-aof:修复 AOF 持久化文件
redis-check-rdb:修复 RDB 持久化文件
redis-cli:Redis 命令行工具

1.redis-cli 命令行工具
语法:redis-cli -h host -p port -a password
-h :指定远程主机
-p :指定 Redis 服务的端口号
-a :指定密码,未设置数据库密码可以省略-a 选项
若不添加任何选项表示,则使用 127.0.0.1:6379 连接本机上的 Redis 数据库

redis-cli -h 192.168.44.10 -p 6379

2.redis-benchmark 测试工具

-h指定服务器主机名。
-p指定服务器端口。
-s指定服务器 socket
-c指定并发连接数。
-n指定请求数。
-d以字节的形式指定 SET/GET 值的数据大小。
-k1=keep alive 0=reconnect 。
-rSET/GET/INCR 使用随机 key, SADD 使用随机值。
-P通过管道传输请求。
-q强制退出 redis。仅显示 query/sec 值。
-csv以 CSV 格式输出。
-l生成循环,永久执行测试。
-t仅运行以逗号分隔的测试命令列表。
-IIdle 模式。仅打开 N 个 idle 连接并等待。

向 IP 地址为 192.168.223.10、端口为 6379 的 Redis 服务器发送 100 个并发连接与 100000 个请求测试性能
redis-benchmark -h 192.168.223.10 -p 6379 -c 100 -n 100000
在这里插入图片描述

测试存取大小为 100 字节的数据包的性能
redis-benchmark -h 192.168.44.10 -p 6379 -q -d 100
在这里插入图片描述
测试本机上 Redis 服务在进行 set 与 lpush 操作时的性能
redis-benchmark -t set,lpush -n 100000 -q
在这里插入图片描述

五、Redis 数据库常用命令

set   存放数据,命令格式为 set key value
get   获取数据,命令格式为 get key
keys  命令可以取符合规则的键值列表,通常情况可以结合*、?等选项来使用。
exists  命令可以判断键值是否存在。
del   命令可以删除当前数据库的指定 key。
type  命令可以获取 key 对应的 value 值类型。
例:
redis-cli -p 6379
 
set name yy
get name
 
set a1 1
set a2 2
set a3 3

在这里插入图片描述

keys *
keys a*
keys a?
del a2
keys *

在这里插入图片描述
在这里插入图片描述

exists a1
exists aa

在这里插入图片描述

rename 命令是对已有 key 进行重命名。(覆盖)
命令格式:rename 源key 目标key
 
使用rename命令进行重命名时,无论目标key是否存在都进行重命名,且源key的值会覆盖目标key的值。在实际使用过程中,建议先用 exists 命令查看目标 key 是否存在,然后再决定是否执行 rename 命令,以避免覆盖重要数据。
 
例:
keys a*
rename a22 a2
keys a*
get a1
get a2
rename a1 a2
keys a*
get a2

在这里插入图片描述在这里插入图片描述

renamenx 命令的作用是对已有 key 进行重命名,并检测新名是否存在,如果目标 key 存在则不进行重命名。(不覆盖)
命令格式:renamenx 源key 目标key
例:

renamenx a1 a3
renamenx a1 a4
keys a*

在这里插入图片描述

dbsize 命令的作用是查看当前数据库中 key 的数目。
例:
keys *
dbsize

在这里插入图片描述

config set requirepass 1234

在这里插入图片描述

redis-cli
auth 1234         #输入密码后才能进行操作

在这里插入图片描述

六、Redis 多数据库常用命令

Redis 支持多数据库,Redis 默认情况下包含 16 个数据库,数据库名称是用数字 0-15 来依次命名的。

多数据库相互独立,互不干扰。

多数据库间切换

命令格式:select 序号

使用 redis-cli 连接 Redis 数据库后,默认使用的是序号为 0 的数据库。

127.0.0.1:6379> select 10     #切换至序号为 10 的数据库
127.0.0.1:6379[10]> select 15   #切换至序号为 15 的数据库
127.0.0.1:6379[15]> select 0    #切换至序号为 0 的数据库

在这里插入图片描述

格式:move 键值 序号
例:
set a1 1
 
select 1
get a1
 
select 0
move a1 1         #把a1移动到1库
get a1
 
select 1
get a1

在这里插入图片描述

清除数据库内数据
FLUSHDB :清空当前数据库数据
FLUSHALL :清空所有数据库的数据,慎用!

七、Redis 高可用

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。

但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。

持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。

主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。

Cluster集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

八、Redis 持久化

持久化的功能:Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

1.Redis 提供两种方式进行持久化

RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上。

AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。

2.RDB 持久化

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

1.触发条件

RDB持久化的触发分为手动触发和自动触发两种。

(1)手动触发
save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。

bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。

(2)自动触发
在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。

save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。

vim /etc/redis/6379.conf

--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave

--254行--指定RDB文件名
dbfilename dump.rdb

--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379

--242行--是否开启RDB文件压缩
rdbcompression yes

##其他自动触发机制##
除了save m n 以外,还有一些其他情况会触发bgsave:
●在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。

2.执行流程

1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息
在这里插入图片描述

3. 启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

3.AOF 持久化

RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

1.开启AOF

Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:

vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes

在这里插入图片描述

2.执行流程

由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。

AOF的执行流程包括:
●命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
●文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
●文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

(1)命令追加(append)
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

(2)文件写入(write)和文件同步(sync)
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:

vim /etc/redis/6379.conf
–729–
●appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。

●appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。

●appendfsync everysecond: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

在这里插入图片描述
(3)文件重写(rewrite)
随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

文件重写之所以能够压缩AOF文件,原因在于:
●过期的数据不再写入文件
●无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
●多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

文件重写的触发,分为手动触发和自动触发:
●手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
●自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

vim /etc/redis/6379.conf
--771--
auto-aof-rewrite-percentage 100 	#当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
auto-aof-rewrite-min-size 64mb      #当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF

在这里插入图片描述
关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

文件重写的流程如下:
(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。
在这里插入图片描述

3. 启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

十.RDB和AOF的优缺点

RDB持久化
优点:
1.持久化速度比较快,写入到RDB文件时,会进行压缩
2.集群中,redis主从复制默认RDB文件进行恢复操作,所以同步性能较高

缺点:
1.数据完整性不如AOF
2.RDB创建内存数据的快照(类似完全备份)
3.在进行备份时会阻塞进程

AOF持久化
优点:
1.AOF数据的完整性比RDB更高
2.重写功能会对无效语句进行删除

缺点:
1.执行语句一致的情况下,AOF备份的内容更大
2.AOF消耗的性能更大,占用磁盘越来越大(类似增量备份)

十一.Redis 性能管理

----- 查看Redis内存使用 -----
 
redis-cli -h 192.168.223.10 -p 6379
192.168.223.10:6379> info memory

在这里插入图片描述

1.内存碎片率

操作系统分配的内存值 used_memory_rss 除以 Redis 使用的内存总量值 used_memory 计算得出。
内存值 used_memory_rss 表示该进程所占物理内存的大小,即为操作系统分配给 Redis 实例的内存大小。

除了用户定义的数据和内部开销以外,used_memory_rss 指标还包含了内存碎片的开销, 内存碎片是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)。

举例来说:Redis 需要分配连续内存块来存储 1G 的数据集。如果物理内存上没有超过 1G 的连续内存块, 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据,该操作就会导致内存碎片的产生。

跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
●内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
●内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。
●内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。

2.内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

#避免内存交换发生的方法:
●针对缓存数据大小选择安装 Redis 实例
●尽可能的使用Hash数据结构存储
●设置key的过期时间

3.内回收key

内存清理策略,保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。
配置文件中修改 maxmemory-policy 属性值:

vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction

●volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
●volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
●noenviction:禁止淘汰数据(不删除直到写满时报错)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2135000.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【算法专题--回文】最长回文子串 -- 高频面试题(图文详解,小白一看就懂!!)

目录 一、前言 二、题目描述 三、预备知识 🥝 什么回文串 ? 四、题目解析 五、总结与提炼 六、共勉 一、前言 最长回文子串 这道题,可以说是--回文专题 --,最经典的一道题,也是在面试中频率最高…

哈希表和双向链表实现LRU

LRU(Least Recently Used)即最近最少使用,是一种内存管理算法。最近在Linux的缓冲区管理也看到了使用LRU算法,即利用哈希表进行 O(1) 复杂度的快速查找,利用双向链表(里面的元素是缓冲头)对缓冲…

再次进阶 舞台王者 第八季完美童模全球赛代言人【吴浩美】赛场+秀场超燃合集

7月20-23日,2024第八季完美童模全球总决赛在青岛圆满落幕。在盛大的颁奖典礼上,一位才能出众的少女——吴浩美迎来了她舞台生涯的璀璨时刻。 代言人——吴浩美,以璀璨童星之姿,优雅地踏上完美童模盛宴的绚丽舞台,作为开…

【趣学Python算法100例】兔子产子

问题描述 有一对兔子,从出生后的第3个月起每个月都生一对兔子。小兔子长到第3个月后每个月又生一对兔子,假设所有的兔子都不死,问30个月内每个月的兔子总对数为多少? 题目解析 兔子产子问题是一个有趣的古典数学问题&#xff0c…

Office关闭安全提示

每次启动都要提示这个,怎么关?

大数据-135 - ClickHouse 集群 - 数据类型 实际测试

点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…

Nuxt Kit 自动导入功能:高效管理你的模块和组合式函数

title: Nuxt Kit 自动导入功能:高效管理你的模块和组合式函数 date: 2024/9/14 updated: 2024/9/14 author: cmdragon excerpt: 通过使用 Nuxt Kit 的自动导入功能,您可以更高效地管理和使用公共函数、组合式函数和 Vue API。无论是单个导入、目录导入还是从第三方模块导入…

GMB外链是什么?

GMB外链其实就是百万外链,它是一种通过大量反向链接来提升网站页面权重的方法。如果你刚建了一个新网站,想在短时间内被收录并获得排名,GMB外链能帮你做到这点。它不像传统SEO那样需要等待好几个月的效果,GMB外链能在24小时内帮你…

vector(2)

前言 通过上一节的学习,我们知道了vector中可以存放各种类型的数据,这就意味着vector之中不仅仅可以存放int、char等内置类型,还可以存放vector和string等类型,我们结合底层的具体情况来具体分析 vector的复用(套娃&a…

光控资本:股票增发是什么意思?股票增发的形式?

股票增发配售是已上市的公司通过指定投资者(如大股东或组织投资者)或全部投资者额定发行股份搜集资金的融资办法。 留意:股票增发后,股价会除权下降。由于增发后股本扩大了,那么每股收益与每股净资产均下降&#xff0…

今天一次讲明白C++条件变量

在C中,std::condition_variable 条件变量是一个同步原语,它允许一个或多个线程在某个条件成立时,被另一个线程唤醒。std::condition_variable 条件变量通常与互斥锁(std::mutex)一起使用,以保护共享数据和同…

David Baker 任科学顾问,初创公司发布世界最大蛋白质相互作用数据库,已获 8 轮融资

蛋白质-蛋白质相互作用 (Protein-Protein Interactions, PPI) 是细胞生命活动的重要组成部分,在调控和维持细胞的生理功能中(如细胞的信号传导、代谢反应和基因表达)发挥着不可或缺的作用。 然而目前 PPl 数据库中的数据相对较少&#xff0c…

穿越病毒区-第15届蓝桥省赛Scratch中级组真题第2题

[导读]:超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成,后续会不定期解读蓝桥杯真题,这是Scratch蓝桥杯真题解析第187讲。 如果想持续关注Scratch蓝桥真题解读,可以点击《Scratch蓝桥杯历年真题》并订阅合集,…

CCF201912_1

题解&#xff1a; #include<bits/stdc.h>using namespace std;int n;bool shouldSkip(int num) {if (num % 7 0){return true;}while (num > 0){if (num % 10 7){return true;}num / 10;}return false; } int main() {scanf("%d", &n);int b[4] { 0…

Android Studio 安装配置教程(Windows最详细版)

目录 前言 Android Studio 下载 Android Studio 安装 Android Studio 使用 一、创建默认项目&#xff08;Compose&#xff09; 二、创建常规项目 三、使用ViewBinding 四、查看Gradle版本、SDK版本、JDK版本 ① Gradle版本 ② SDK版本 ③ JDK版本 前言 Android开发…

跟《经济学人》学英文:2024年09月14日这期 The sweet story of Peru’s blueberry boom

The sweet story of Peru’s blueberry boom Plucky farmers have transformed the market in only ten years plucky&#xff1a;英 [ˈplʌki] 勇敢的&#xff1b;无畏的&#xff1b;有胆识的 原文&#xff1a; Peru’s blueberry harvest is just beginning, and Ivan Ja…

自动驾驶:LQR、ILQR和DDP原理、公式推导以及代码演示(七、CILQR约束条件下的ILQR求解)

&#xff08;七&#xff09;CILQR约束条件下的ILQR求解 CILQR&#xff08;(Constrained Iterative Linear Quadratic Regulator)&#xff09; 是为了在 iLQR 基础上扩展处理控制输入和状态约束的问题。在这种情况下&#xff0c;系统不仅要优化控制输入以最小化代价函数&#x…

NET WPF使用组件库HandyControl

一、背景 WPF原生控件提供的API功能不够强大&#xff0c;设置一般的功能都需要进行很复杂的配置和实现。 1.1 原生按钮控件 例如&#xff0c;原生控件<Button/> 默认效果是这样的&#xff1a; MainWindow.xaml代码&#xff1a; <Window x:Class"wpf_demo.Mai…

SAP_ABAP_编程基础

SAP ABAP 顾问能力模型(同心圆方法论)_sap abap 顾问能力模型(同心圆方法论)-CSDN博客文章浏览阅读1.8k次,点赞5次,收藏35次。目标:基于对SAP abap 顾问能力模型的梳理,给一年左右经验的abaper 快速成长为三年经验提供超级燃料!_sap abap 顾问能力模型(同心圆方法论)htt…

我们的Python服务器开发脚手架开放了

pdServer是我们实践过程中的产物&#xff0c;当我们在开发各类python应用时&#xff0c;经常需要一个server来提供服务。于是我们使用fastApi来提实现&#xff0c;并在这个过程中不断的完善&#xff0c;实现了JWT\SQL等。 我们的脚手架项目可以&#xff1a; fastApi实现一个服…