分类预测|基于黑翅鸢优化核极限学习机的数据分类预测Matlab程序BKA-KELM 多特征输入多类别输出 含基础KELM

news2025/1/12 17:20:12

分类预测|基于黑翅鸢优化核极限学习机的数据分类预测Matlab程序BKA-KELM 多特征输入多类别输出 含基础KELM

文章目录

  • 一、基本原理
      • BKA-HKELM 分类预测原理和流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、基本原理

BKA-HKELM 分类预测原理和流程

1. 黑翅鸢优化算法(BKA)

原理

  • 黑翅鸢优化算法(BKA):一种群体智能优化算法,模拟黑翅鸢在猎物寻找过程中的行为,特别是在飞行和捕食时的行为模式。
  • 过程
    • 个体位置更新:基于黑翅鸢的捕食和飞行行为更新优化算法中的个体位置。
    • 适应度评估:根据目标函数对每个个体的适应度进行评估,选择最优解。
    • 行为模拟:包括探索和开发阶段,以寻找全局最优解。

应用

  • 在BKA-HKELM中,BKA用于优化核极限学习机(HKELM)的超参数,以提升分类性能。

2. 核极限学习机(HKELM)

原理

  • 极限学习机(ELM):一种高效的单隐层前馈神经网络,具有快速训练和良好泛化性能的特点。核心思想是随机初始化隐层节点的权重和偏置,然后通过最小二乘法求解输出权重。
  • 核极限学习机(HKELM):将ELM与核方法结合,引入核函数来处理非线性数据,使模型能够在更高维的特征空间中进行学习。
  • 结构
    • 核函数:用于将输入数据映射到更高维的特征空间,常用的核函数包括高斯径向基函数、多项式核函数等。
    • 训练过程:通过核方法计算映射后的数据的隐层特征,并使用最小二乘法解决输出权重。

应用

  • HKELM用于构建分类模型,通过引入核函数扩展了ELM的能力,适用于处理复杂的非线性分类问题。

3. BKA-HKELM模型流程

  1. 数据预处理

    • 数据清洗:处理数据中的缺失值和异常值。
    • 特征选择/提取:选择和提取相关特征。
    • 标准化:对数据进行标准化处理以提高模型稳定性。
  2. 超参数优化(BKA)

    • 定义优化目标:例如HKELM分类器的准确率或交叉验证性能。
    • 初始化:设置BKA算法的初始参数,如个体数量和迭代次数。
    • 个体更新:模拟黑翅鸢的行为更新个体位置,探索超参数空间。
    • 适应度评估:通过HKELM的性能评估每个个体的适应度。
    • 最优解选择:根据适应度评估选择最佳的超参数组合。
  3. HKELM模型训练

    • 超参数配置:使用BKA优化得到的超参数配置,如核函数类型和参数。
    • 训练模型:在训练集上训练HKELM模型,包括计算核映射后的特征和求解输出权重。
    • 模型验证:通过交叉验证等方法验证HKELM模型的性能。
  4. 模型预测和评估

    • 预测:使用训练好的BKA-HKELM模型对测试集进行预测。
    • 评估:使用准确率、F1分数、混淆矩阵等指标评估模型的分类性能。
  5. 结果分析和调整

    • 分析结果:分析模型在各个评估指标上的表现,进行详细分析。
    • 调整优化:根据评估结果对模型进行调整,必要时重新进行超参数优化和模型训练。

总结

BKA-HKELM模型结合了黑翅鸢优化算法(BKA)和核极限学习机(HKELM)。BKA用于优化HKELM的超参数,而HKELM则利用核函数处理非线性数据,提高分类性能。整个流程包括数据预处理、超参数优化、HKELM训练、模型预测和评估,旨在实现高效且准确的分类预测。

二、实验结果

BKA-KELM分类结果:
在这里插入图片描述
KELM分类结果:
在这里插入图片描述

在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2133600.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

最好用的翻译器:什么是DeepL?如何订阅支付DeepL,订阅DeepL Pro以及申请DeepL API?

DeepL目前最好用的翻译软件,如果是学习翻译的同学或者海外客户翻译,一定不能错过,用它来处理文件,论文等翻译是最好不过了的!!! AI翻译技术的飞速发展正在颠覆我们的沟通方式,打破语…

6年前倒闭的机器人独角兽,再次杀入AGV市场

导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。 新书《智能物流系统构成与技术实践》 在科技创新的浪潮中,一个曾经辉煌又迅速陨落的企业正悄然重生,引发业界广泛关注。 曾经的协作机器人鼻祖Rethink Robotic…

机器学习周报(9.9-9.15)-Pytorch学习(三)

文章目录 摘要Abstract1 损失函数与反向传播1.1 L1Loss损失函数1.2 MSELoss损失函数1.3 交叉熵损失函数(CrossEntropyLoss)1.4 反向传播 2 优化器3 现有网络模型的使用及修改4 网络模型的保存与读取4.1 保存模型4.2 读取 总结 摘要 本次学习对Pytorch中…

8.3Sobel算子边缘检测

实验原理 Sobel算子是一种广泛使用的一阶导数边缘检测算子,它通过计算图像在水平和垂直方向上的梯度来检测边缘。Sobel算子使用一对3x3的掩模来实现这一功能。相比于其他边缘检测算子,Sobel算子在检测边缘的同时还能提供一定的抗噪能力。 在OpenCV中&a…

【射频通信电子线路基础第四讲】LC匹配网络、史密斯圆图、噪声与噪声系数

一、LC匹配网络 1、L-I型(负载与电抗并联) 2、L-II型(负载与电抗串联) 3、T型网络和π型网络例子 二、Smith圆图 这里先附上知乎大神的讲解链接,推荐直接去看非常适合入门理解,看完之后茅塞顿开 https://…

MySQL 安全机制全面解析

‍ 在如今的数字化时代,数据库安全 变得越来越重要。为了防止对数据库进行非法操作,MySQL 定义了一套完整的安全机制,包括用户管理、权限管理 和 角色管理。本文将为你深入浅出地介绍这三大安全机制,帮助你轻松掌握MySQL的安全管…

MPP数据库之SelectDB

SelectDB 是一个高性能、云原生的 MPP(大规模并行处理)数据库,旨在为分析型数据处理场景提供快速、弹性和高效的解决方案。它专为处理大规模结构化和半结构化数据设计,常用于企业级业务分析、实时分析和决策支持。 SelectDB 是在…

Vue2时间轴组件(TimeLine/分页、自动顺序播放、暂停、换肤功能、时间选择,鼠标快速滑动)

目录 1介绍背景 2实现原理 3组件介绍 4代码 5其他说明 1介绍背景 项目背景是 一天的时间轴 10分钟为一间隔 一天被划分成144个节点 一页面12个节点 代码介绍的很详细 可参考或者借鉴 2实现原理 对Element-plus滑块组件的二次封装 基于Vue2(2.6.14&#x…

数字孪生引领智慧医院革新:未来医疗的智能化之路

数字孪生(Digital Twin) 是指将物理实体或系统的数字化模型与其实时运行数据相结合,以反映实体的状态、行为和性能,并通过数据分析和仿真来优化决策和管理。在智慧医院建设中,数字孪生技术扮演着关键角色。 1. 数字孪生…

基于SpringBoot+Vue的瑜伽体验课预约管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于JavaSpringBootVueMySQL的…

国内按月/季/年使用GPT4.0及OpenAI最新的模型

其实gpt官方版本不仅对于网络要求很高,且订阅用户对高级模型的使用也是有次数限制的, 国内想要稳定且最快同步官网的最新模型,我推荐一个地址,可以方便的不限次数的使用GPT4.0等模型, 今天早上刚出的OpenAI全新的草莓模型&#xf…

uniapp 发布苹果IOS详细流程,包括苹果开发者公司账号申请、IOS证书、.p12证书文件等

记录一下uniapp发布苹果IOS的流程。 一、苹果开发者公司账号申请 1、邓白氏编码申请(先申请公司邓白氏编码,这一步需要1-2周,没有这个编码苹果开发者没法申请,已有编码的跳过此步骤): 1)联系苹…

【C++ Primer Plus习题】16.1

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream> #include <string> usin…

Linux通配符*、man 、cp、mv、echo、cat、more、less、head、tail、等指令、管道 | 、指令的本质 等的介绍

文章目录 前言一、Linux通配符*二、man 指令三、 cp 指令四、mv指令五、 echo 指令六、cat 指令七、more 指令八、 less 指令九、 head 指令十、 tail指令十一、 管道 |十二、指令的本质总结 前言 Linux通配符*、man 、cp、mv、echo、cat、more、less、head、tail、等指令、管…

[Unity Demo]重启项目之从零开始制作空洞骑士Hollow Knight第一集:导入素材以及建立并远程连接git仓库

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、导入素材二、使用步骤 1.建立并远程连接git2.github和仓库连接总结 前言 好久没来CSDN看看&#xff0c;突然看到前两年自己写的文章从零开始制作空洞骑士只…

【计算机网络 - 基础问题】每日 3 题(一)

✍个人博客&#xff1a;Pandaconda-CSDN博客 &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/fYaBd &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞&#x1f44d;收藏&…

基于云计算的虚拟电厂负荷预测

基于云计算的虚拟电厂负荷预测 随着电网规模的扩大及新能源的不断应用&#xff0c;并网电网的安全性和经济性备受关注。 电网调度不再是单一或局部控制&#xff0c;而是采用智能网络集成方式调度 。 智能电网应具有以下特点&#xff1a;坚强自愈&#xff0c;可以抵御外来干扰甚…

使用 Milvus、vLLM 和 Llama 3.1 搭建 RAG 应用

vLLM 是一个简单易用的 LLM 推理服务库。加州大学伯克利分校于 2024 年 7 月将 vLLM 作为孵化项目正式捐赠给 LF AI & Data Foundation 基金会。欢迎 vLLM 加入 LF AI & Data 大家庭&#xff01;&#x1f389; 在主流的 AI 应用架构中&#xff0c;大语言模型&#xff0…

【devops】devops-git之介绍以及日常使用

本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》&#xff1a;python零基础入门学习 《python运维脚本》&#xff1a; python运维脚本实践 《shell》&#xff1a;shell学习 《terraform》持续更新中&#xff1a;terraform_Aws学习零基础入门到最佳实战 《k8…

【GBase 8c V5_3.0.0 分布式数据库常用几个SQL】

1.检查应用连接数 以管理员用户 gbase&#xff0c;登录数据库主节点。 接数据库&#xff0c;并执行如下 SQL 语句查看连接数。 SELECT count(*) FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;2.查看空闲连接 查看空闲(state 字段为”idle”)且长时间没有更…