源码分析:LinkedList

news2024/9/21 2:37:05

一、LinkedList 简介

LinkedList 是一个基于双向链表实现的集合类,经常被拿来和 ArrayList 做比较。

不过,我们在项目中一般是不会使用到 LinkedList 的,需要用到 LinkedList 的场景几乎都可以使用 ArrayList 来代替,并且,性能通常会更好!就连 LinkedList 的作者约书亚 · 布洛克(Josh Bloch)自己都说从来不会使用 LinkedList

另外,不要下意识地认为 LinkedList 作为链表就最适合元素增删的场景。我在上面也说了,LinkedList 仅仅在头尾插入或者删除元素的时候时间复杂度近似 O(1),其他情况增删元素的平均时间复杂度都是 O(n) 。

1.LinkedList 插入和删除元素的时间复杂度?

  • 头部插入/删除:只需要修改头结点的指针即可完成插入/删除操作,因此时间复杂度为 O(1)。
  • 尾部插入/删除:只需要修改尾结点的指针即可完成插入/删除操作,因此时间复杂度为 O(1)。
  • 指定位置插入/删除:需要先移动到指定位置,再修改指定节点的指针完成插入/删除,因此需要移动平均 n/2 个元素,时间复杂度为 O(n)。

2.LinkedList 为什么不能实现 RandomAccess 接口?

RandomAccess 是一个标记接口,用来表明实现该接口的类支持随机访问(即可以通过索引快速访问元素)。由于 LinkedList 底层数据结构是链表,内存地址不连续,只能通过指针来定位,不支持随机快速访问,所以不能实现 RandomAccess 接口。

二、LinkedList 源码分析

这里以 JDK1.8 为例,分析一下 LinkedList 的底层核心源码。

LinkedList 的类定义如下:

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
  //...
}

LinkedList 继承了 AbstractSequentialList ,而 AbstractSequentialList 又继承于 AbstractList

阅读过 ArrayList 的源码我们就知道,ArrayList 同样继承了 AbstractList , 所以 LinkedList 会有大部分方法和 ArrayList 相似。

LinkedList 实现了以下接口:

  • List : 表明它是一个列表,支持添加、删除、查找等操作,并且可以通过下标进行访问。
  • Deque :继承自 Queue 接口,具有双端队列的特性,支持从两端插入和删除元素,方便实现栈和队列等数据结构。需要注意,Deque 的发音为 "deck" [dɛk],这个大部分人都会读错。
  • Cloneable :表明它具有拷贝能力,可以进行深拷贝或浅拷贝操作。
  • Serializable : 表明它可以进行序列化操作,也就是可以将对象转换为字节流进行持久化存储或网络传输,非常方便。

 LinkedList 中的元素是通过 Node 定义的:

private static class Node<E> {
    E item;// 节点值
    Node<E> next; // 指向的下一个节点(后继节点)
    Node<E> prev; // 指向的前一个节点(前驱结点)

    // 初始化参数顺序分别是:前驱结点、本身节点值、后继节点
    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

1.初始化

LinkedList 中有一个无参构造函数和一个有参构造函数。

// 创建一个空的链表对象
public LinkedList() {
}

// 接收一个集合类型作为参数,会创建一个与传入集合相同元素的链表对象
public LinkedList(Collection<? extends E> c) {
    this();
    addAll(c);
}

2.插入元素

LinkedList 除了实现了 List 接口相关方法,还实现了 Deque 接口的很多方法,所以我们有很多种方式插入元素。

我们这里以 List 接口中相关的插入方法为例进行源码讲解,对应的是add() 方法。

add() 方法有两个版本:

  • add(E e):用于在 LinkedList 的尾部插入元素,即将新元素作为链表的最后一个元素,时间复杂度为 O(1)。
  • add(int index, E element):用于在指定位置插入元素。这种插入方式需要先移动到指定位置,再修改指定节点的指针完成插入/删除,因此需要移动平均 n/2 个元素,时间复杂度为 O(n)。
// 在链表尾部插入元素
public boolean add(E e) {
    linkLast(e);
    return true;
}

// 在链表指定位置插入元素
public void add(int index, E element) {
    // 下标越界检查
    checkPositionIndex(index);

    // 判断 index 是不是链表尾部位置
    if (index == size)
        // 如果是就直接调用 linkLast 方法将元素节点插入链表尾部即可
        linkLast(element);
    else
        // 如果不是则调用 linkBefore 方法将其插入指定元素之前
        linkBefore(element, node(index));
}

// 将元素节点插入到链表尾部
void linkLast(E e) {
    // 将最后一个元素赋值(引用传递)给节点 l
    final Node<E> l = last;
    // 创建节点,并指定节点前驱为链表尾节点 last,后继引用为空
    final Node<E> newNode = new Node<>(l, e, null);
    // 将 last 引用指向新节点
    last = newNode;
    // 判断尾节点是否为空
    // 如果 l 是null 意味着这是第一次添加元素
    if (l == null)
        // 如果是第一次添加,将first赋值为新节点,此时链表只有一个元素
        first = newNode;
    else
        // 如果不是第一次添加,将新节点赋值给l(添加前的最后一个元素)的next
        l.next = newNode;
    size++;
    modCount++;
}

// 在指定元素之前插入元素
void linkBefore(E e, Node<E> succ) {
    // assert succ != null;断言 succ不为 null
    // 定义一个节点元素保存 succ 的 prev 引用,也就是它的前一节点信息
    final Node<E> pred = succ.prev;
    // 初始化节点,并指明前驱和后继节点
    final Node<E> newNode = new Node<>(pred, e, succ);
    // 将 succ 节点前驱引用 prev 指向新节点
    succ.prev = newNode;
    // 判断前驱节点是否为空,为空表示 succ 是第一个节点
    if (pred == null)
        // 新节点成为第一个节点
        first = newNode;
    else
        // succ 节点前驱的后继引用指向新节点
        pred.next = newNode;
    size++;
    modCount++;
}

 

3.获取元素

LinkedList获取元素相关的方法一共有 3 个:

  1. getFirst():获取链表的第一个元素。
  2. getLast():获取链表的最后一个元素。
  3. get(int index):获取链表指定位置的元素。
// 获取链表的第一个元素
public E getFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return f.item;
}

// 获取链表的最后一个元素
public E getLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    return l.item;
}

// 获取链表指定位置的元素
public E get(int index) {
  // 下标越界检查,如果越界就抛异常
  checkElementIndex(index);
  // 返回链表中对应下标的元素
  return node(index).item;
}

这里的核心在于 node(int index) 这个方法:

// 返回指定下标的非空节点
Node<E> node(int index) {
    // 断言下标未越界
    // assert isElementIndex(index);
    // 如果index小于size的二分之一  从前开始查找(向后查找)  反之向前查找
    if (index < (size >> 1)) {
        Node<E> x = first;
        // 遍历,循环向后查找,直至 i == index
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    } else {
        Node<E> x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}

get(int index)remove(int index) 等方法内部都调用了该方法来获取对应的节点。

从这个方法的源码可以看出,该方法通过比较索引值与链表 size 的一半大小来确定从链表头还是尾开始遍历。如果索引值小于 size 的一半,就从链表头开始遍历,反之从链表尾开始遍历。这样可以在较短的时间内找到目标节点,充分利用了双向链表的特性来提高效率。

4.删除元素

LinkedList删除元素相关的方法一共有 5 个:

  1. removeFirst():删除并返回链表的第一个元素。
  2. removeLast():删除并返回链表的最后一个元素。
  3. remove(E e):删除链表中首次出现的指定元素,如果不存在该元素则返回 false。
  4. remove(int index):删除指定索引处的元素,并返回该元素的值。
  5. void clear():移除此链表中的所有元素。
// 删除并返回链表的第一个元素
public E removeFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return unlinkFirst(f);
}

// 删除并返回链表的最后一个元素
public E removeLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    return unlinkLast(l);
}

// 删除链表中首次出现的指定元素,如果不存在该元素则返回 false
public boolean remove(Object o) {
    // 如果指定元素为 null,遍历链表找到第一个为 null 的元素进行删除
    if (o == null) {
        for (Node<E> x = first; x != null; x = x.next) {
            if (x.item == null) {
                unlink(x);
                return true;
            }
        }
    } else {
        // 如果不为 null ,遍历链表找到要删除的节点
        for (Node<E> x = first; x != null; x = x.next) {
            if (o.equals(x.item)) {
                unlink(x);
                return true;
            }
        }
    }
    return false;
}

// 删除链表指定位置的元素
public E remove(int index) {
    // 下标越界检查,如果越界就抛异常
    checkElementIndex(index);
    return unlink(node(index));
}

这里的核心在于 unlink(Node<E> x) 这个方法:

E unlink(Node<E> x) {
    // 断言 x 不为 null
    // assert x != null;
    // 获取当前节点(也就是待删除节点)的元素
    final E element = x.item;
    // 获取当前节点的下一个节点
    final Node<E> next = x.next;
    // 获取当前节点的前一个节点
    final Node<E> prev = x.prev;

    // 如果前一个节点为空,则说明当前节点是头节点
    if (prev == null) {
        // 直接让链表头指向当前节点的下一个节点
        first = next;
    } else { // 如果前一个节点不为空
        // 将前一个节点的 next 指针指向当前节点的下一个节点
        prev.next = next;
        // 将当前节点的 prev 指针置为 null,,方便 GC 回收
        x.prev = null;
    }

    // 如果下一个节点为空,则说明当前节点是尾节点
    if (next == null) {
        // 直接让链表尾指向当前节点的前一个节点
        last = prev;
    } else { // 如果下一个节点不为空
        // 将下一个节点的 prev 指针指向当前节点的前一个节点
        next.prev = prev;
        // 将当前节点的 next 指针置为 null,方便 GC 回收
        x.next = null;
    }

    // 将当前节点元素置为 null,方便 GC 回收
    x.item = null;
    size--;
    modCount++;
    return element;
}

unlink() 方法的逻辑如下:

  1. 首先获取待删除节点 x 的前驱和后继节点;
  2. 判断待删除节点是否为头节点或尾节点:
    • 如果 x 是头节点,则将 first 指向 x 的后继节点 next
    • 如果 x 是尾节点,则将 last 指向 x 的前驱节点 prev
    • 如果 x 不是头节点也不是尾节点,执行下一步操作
  3. 将待删除节点 x 的前驱的后继指向待删除节点的后继 next,断开 x 和 x.prev 之间的链接;
  4. 将待删除节点 x 的后继的前驱指向待删除节点的前驱 prev,断开 x 和 x.next 之间的链接;
  5. 将待删除节点 x 的元素置空,修改链表长度。

5.遍历链表

推荐使用for-each 循环来遍历 LinkedList 中的元素, for-each 循环最终会转换成迭代器形式。

LinkedList<String> list = new LinkedList<>();
list.add("apple");
list.add("banana");
list.add("pear");

for (String fruit : list) {
    System.out.println(fruit);
}

LinkedList 的遍历的核心就是它的迭代器的实现。

// 双向迭代器
private class ListItr implements ListIterator<E> {
    // 表示上一次调用 next() 或 previous() 方法时经过的节点;
    private Node<E> lastReturned;
    // 表示下一个要遍历的节点;
    private Node<E> next;
    // 表示下一个要遍历的节点的下标,也就是当前节点的后继节点的下标;
    private int nextIndex;
    // 表示当前遍历期望的修改计数值,用于和 LinkedList 的 modCount 比较,判断链表是否被其他线程修改过。
    private int expectedModCount = modCount;
    …………
}

下面我们对迭代器 ListItr 中的核心方法进行详细介绍。

我们先来看下从头到尾方向的迭代:

// 判断还有没有下一个节点
public boolean hasNext() {
    // 判断下一个节点的下标是否小于链表的大小,如果是则表示还有下一个元素可以遍历
    return nextIndex < size;
}
// 获取下一个节点
public E next() {
    // 检查在迭代过程中链表是否被修改过
    checkForComodification();
    // 判断是否还有下一个节点可以遍历,如果没有则抛出 NoSuchElementException 异常
    if (!hasNext())
        throw new NoSuchElementException();
    // 将 lastReturned 指向当前节点
    lastReturned = next;
    // 将 next 指向下一个节点
    next = next.next;
    nextIndex++;
    return lastReturned.item;
}

再来看一下从尾到头方向的迭代:

// 判断是否还有前一个节点
public boolean hasPrevious() {
    return nextIndex > 0;
}

// 获取前一个节点
public E previous() {
    // 检查是否在迭代过程中链表被修改
    checkForComodification();
    // 如果没有前一个节点,则抛出异常
    if (!hasPrevious())
        throw new NoSuchElementException();
    // 将 lastReturned 和 next 指针指向上一个节点
    lastReturned = next = (next == null) ? last : next.prev;
    nextIndex--;
    return lastReturned.item;
}

 如果需要删除或插入元素,也可以使用迭代器进行操作。

LinkedList<String> list = new LinkedList<>();
list.add("apple");
list.add(null);
list.add("banana");

//  Collection 接口的 removeIf 方法底层依然是基于迭代器
list.removeIf(Objects::isNull);

for (String fruit : list) {
    System.out.println(fruit);
}

 迭代器对应的移除元素的方法如下:

// 从列表中删除上次被返回的元素
public void remove() {
    // 检查是否在迭代过程中链表被修改
    checkForComodification();
    // 如果上次返回的节点为空,则抛出异常
    if (lastReturned == null)
        throw new IllegalStateException();

    // 获取当前节点的下一个节点
    Node<E> lastNext = lastReturned.next;
    // 从链表中删除上次返回的节点
    unlink(lastReturned);
    // 修改指针
    if (next == lastReturned)
        next = lastNext;
    else
        nextIndex--;
    // 将上次返回的节点引用置为 null,方便 GC 回收
    lastReturned = null;
    expectedModCount++;
}

三、LinkedList 常用方法测试

代码:

// 创建 LinkedList 对象
LinkedList<String> list = new LinkedList<>();

// 添加元素到链表末尾
list.add("apple");
list.add("banana");
list.add("pear");
System.out.println("链表内容:" + list);

// 在指定位置插入元素
list.add(1, "orange");
System.out.println("链表内容:" + list);

// 获取指定位置的元素
String fruit = list.get(2);
System.out.println("索引为 2 的元素:" + fruit);

// 修改指定位置的元素
list.set(3, "grape");
System.out.println("链表内容:" + list);

// 删除指定位置的元素
list.remove(0);
System.out.println("链表内容:" + list);

// 删除第一个出现的指定元素
list.remove("banana");
System.out.println("链表内容:" + list);

// 获取链表的长度
int size = list.size();
System.out.println("链表长度:" + size);

// 清空链表
list.clear();
System.out.println("清空后的链表:" + list);

输出:

索引为 2 的元素:banana
链表内容:[apple, orange, banana, grape]
链表内容:[orange, banana, grape]
链表内容:[orange, grape]
链表长度:2
清空后的链表:[]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2132150.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

7-8 哈利·波特的考试

题意简述&#xff1a; 给一个图&#xff0c;求一个点&#xff0c;该点离其他点最小距离的最大值 最小。 输入样例: 6 11 3 4 70 1 2 1 5 4 50 2 6 50 5 6 60 1 3 70 4 6 60 3 6 80 5 1 100 2 4 60 5 2 80输出样例: 4 70 注意&#xff1a;0x3f不能写在判断里面&#xff0c;…

【大模型训练】Flash Attention详解

文章目录 前言预备知识FlashAttention1传统Attention计算方式FlashAttention1的基本原理除去Softmax操作的分块计算Softmax分块计算Attention分块计算 FlashAttention2参考资料 前言 FlashAttention系列工作&#xff0c;是一种加速注意力计算方法&#xff0c;目前已经应用在&a…

解决TensorFlow-GPU安装错误:Python版本兼容性与环境配置问题

创作不易&#xff0c;您的打赏、关注、点赞、收藏和转发是我坚持下去的动力&#xff01; 从错误信息中可以看到&#xff0c;tensorflow-gpu 安装时出现了 packaging.requirements.InvalidRequirement 错误&#xff0c;具体是因为解析 Python 版本时出现了问题。这通常是由于环…

OpenAI全新发布o1模型:开启 AGI 的新时代

OpenAI全新发布o1模型&#xff1a;开启 AGI 的新时代 欢迎关注【youcans的AGI学习笔记】原创作品 2024年9月13日&#xff0c;OpenAI新模型o1 正式发布。o1 在测试化学、物理和生物学专业知识的基准 GPQA-diamond 上&#xff0c;全面超过了人类博士专家。 OpenAI 宣称&#xff…

CANFD芯片应用中关键功能和性能指标分析

CAN FD芯片通信速率高达5Mbps&#xff0c;需要线缆少传输距离较远&#xff0c;在汽车、工业、宇航、能源等领域应用越来越广。 1&#xff09;汽车工业&#xff1a;汽车内部电子系统日益复杂&#xff0c;需要高速、可靠的数据传输来确保车辆的安全和性能。CAN FD通信提供了更高…

R数据对象快速保存与读取:qs包

qs&#xff1a;R对象的快速序列化 qs是一个R语言包&#xff0c;使用qs可以快速地从磁盘中保存和读取对象。** 它的主要目的是替换R中的saveRDS和readRDS函数&#xff0c;提供了一个更加快速而完整的数据读写方法。 ** 受到fst的启发&#xff0c;qs通过lz4/zstd库使用了类似的块…

人工智能和机器学习:探讨人工智能和机器学习的最新发展、应用、挑战和未来趋势

人工智能和机器学习是当前科技领域的热点话题&#xff0c;其最新发展、应用、挑战和未来趋势备受关注。 最新发展&#xff1a; 人工智能和机器学习技术在近年来得到了快速发展&#xff0c;尤其是深度学习技术的广泛应用。例如&#xff0c;深度学习在图像识别、语音识别、自然语…

docker入门安装及使用

docker概述 docker是一种容器技术&#xff0c;它提供了标准的应用镜像&#xff08;包含应用和应用多需要的依赖&#xff09;&#xff0c;因此&#xff0c;我们可以非常轻松的在docker中安装应用&#xff0c;安装好的应用相当于一个独立的容器 如下图所示&#xff0c;为docker中…

机器学习文献|基于循环细胞因子特征,通过机器学习算法预测NSCLC免疫治疗结局

今天我们一起学习一篇最近发表在Journal for immunotherapy of cancer &#xff08;IF 10.9&#xff09;上的文章&#xff0c;Machine learning for prediction of immunotherapeutic outcome in non-small-cell lung cancer based on circulating cytokine signatures[基于循环…

制证书、制电子印章、签章 -- 演示程序说明

ofd签章系统涉及证书的制作、电子印章制作、签章、验章等环节。关于ofd签章原理&#xff0c;本人写过多篇文章进行了阐述; 见文章《ofd板式文件 电子签章实现方法》、《一款简单易用的印章设计工具》、《签章那些事 -- 让你全面了解签章的流程》。 为了进一步加深对签章过程的理…

基于Spring Security OAuth2认证中心授权模式扩展

介绍 Spring Security OAuth2 默认实现的四种授权模式在实际的应用场景中往往满足不了预期。 需要扩展如下需求&#xff1a; 手机号短信验证码登陆微信授权登录 本次主要通过继承Spring Security OAuth2 抽象类和接口&#xff0c;来实现对oauth2/token接口的手机号短信的认证…

GD32F4开发 -- FATFS移植

之前已经讲了 GD32F4开发 – FATFS文件系统 现在将其一直到我的工程。 一、移植 在工程里创建FATFS文件夹。 移植正点原子 实验39 FATFS实验里的代码。 移植完后如下图&#xff1a; 注意&#xff1a;ffconf.h文件&#xff0c;找到对应宏并按照需求修改。 二、创建 FATFS 分…

最新中科院预警名单发布,多本高分区期刊被标记“On hold”(附20-24年所有名单)

2024年2月&#xff0c;期刊分区表团队发布2024年度《国际期刊预警名单 》。 最新版的《国际期刊预警名单》共有24本期刊&#xff0c;较23年版本的28本减少了4本&#xff0c;全部预警期刊当中&#xff0c;医学类数量最多&#xff0c;达11本。期刊JOURNAL OF BIOMATERIALS AND T…

高效率免费创作文章,4款ai写作生成器来帮忙

高效率免费创作文章&#xff0c;这对于每个创作者来说是非常不错的方法&#xff0c;即能提高创作效率&#xff0c;而且还能节省文章创作成本&#xff0c;但是想要高效率免费创作我们就需要找到相应的ai写作生成器来帮忙。因为如果是人工创作文章就需要耗费时间成本与人力成本的…

在pycharm终端中运行pip命令安装模块时,出现了“你要如何打开这个文件”弹出窗口,是什么状况?

这种情况发生在Windows系统上&#xff0c;当在PyCharm终端中运行pip命令安装模块时&#xff0c;如果系统无法确定要使用哪个程序打开该文件&#xff0c;就会出现“你要如何打开这个文件”弹出窗口。 解决方法是&#xff1a; 选择“查找一个应用于此文件”的选项。在弹出的窗口…

C++与C语言的区别

前言 本文主要用C语言和C做对比来学习C&#xff0c;便于个人理解。C包含C语言&#xff0c;是对C语言的扩展&#xff0c;在C中&#xff0c;支持C语言的语法使用&#xff0c;C是C语言的超集 一、C与C语言的区别 C语言简单高效&#xff0c;适合低级系统编程和硬件相关的开发。…

揭秘Web3新纪元:算力共享平台如何重塑数字世界的力量源泉

目录 一、Web3:算力共享的新舞台 二、技术革新:解锁算力的无限潜能 三、应用场景:算力如何改变世界 四、未来展望:算力共享的无尽可能 在区块链技术的浪潮中,Web3.0的曙光正引领我们迈向一个前所未有的数字时代。而在这场变革的洪流中,基于Web3的算力共享平台犹如一股…

Redis集群_主从复制

Redis集群基本概念 在实际项目中&#xff0c;一般不会只在一台机器上部署redis服务器&#xff0c;因为单台redis服务器不能满足高并发的压力&#xff0c;另外如果该服务器或者redis失效&#xff0c;整个系统就可能崩溃项目里一般会用主从复制的模式来提升性能&#xff0c;用集…

“精装朋友圈”的年轻人,开始在40度高温买羽绒服

文 | 螳螂观察 作者 | 如意 人生一世&#xff0c;苦了自己也不能苦朋友圈。 这届的年轻人&#xff0c;无论人生有多“毛坯”&#xff0c;都有一个一生要强的朋友圈&#xff0c;而且“装修”朋友圈还有一套哲学&#xff0c;信奉图片精修&#xff0c;排版讲究&#xff0c;文案…

OpenAI o1 Review 大模型PHD水平数理推理能力 OpenAI o1 vs GPT4o vs Gemini vs Claude

1. 介绍 OpenAI昨天发布了o1推理优化的大模型&#xff0c;利用了CoT (Chain of Thought) 思维链推理机制&#xff0c;提升了针对数学/物理/编程/逻辑等复杂问题的推理能力。OpenAI官方网站评测 OpenAI o1大模型对比GPT4o的数学、编程能力有显著提升。我们利用DeepNLP的AI Stor…