【通俗理解】二项分布的均值与方差——从成功与失败的概率看分布

news2024/11/15 16:53:05

【通俗理解】二项分布的均值与方差——从成功与失败的概率看分布

关键词提炼

  • #二项分布
  • #均值
  • #方差
  • #成功概率
  • #失败概率
  • #伯努利试验

在这里插入图片描述

公式解释与案例

二项分布的基本公式

二项分布描述的是在n次独立重复的伯努利试验中,成功次数的概率分布。每次试验的成功概率为p,失败概率为1-p。

P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} P(X=k)=(kn)pk(1p)nk

  • n: 试验的总次数
  • k: 成功的次数
  • p: 每次试验成功的概率
  • 1-p: 每次试验失败的概率
  • ( n k ) \binom{n}{k} (kn): 组合数,表示从n次试验中选择k次成功的组合数

通俗解释

想象你有一个装有红色和蓝色小球的袋子,红色小球代表成功,蓝色小球代表失败。
每次你从袋子里随机抽取一个小球(抽取后放回),你重复这个过程n次。
二项分布告诉你,在n次抽取中,你抽到红色小球(成功)k次的概率是多少。

案例

假设你有一个袋子,里面有10个红色小球和90个蓝色小球。你每次随机抽取一个小球并记录颜色,然后放回袋子。你重复这个过程100次。

  • n = 100: 试验的总次数
  • p = 0.1: 每次试验抽到红色小球的概率(10/100)
  • 1-p = 0.9: 每次试验抽到蓝色小球的概率

你感兴趣的是在100次试验中,抽到红色小球(成功)k次的概率。

均值与方差的公式

二项分布的均值(期望值)和方差可以通过以下公式计算:

E ( X ) = n p E(X) = np E(X)=np

V a r ( X ) = n p ( 1 − p ) Var(X) = np(1-p) Var(X)=np(1p)

  • E(X): 成功的期望次数
  • Var(X): 成功的方差

通俗解释

  • 均值(E(X)): 如果你进行很多次这样的100次试验,平均下来你会抽到红色小球(成功)的次数。
  • 方差(Var(X)): 描述你在每次100次试验中,抽到红色小球(成功)次数的波动大小。

案例

在上述例子中:

  • E(X) = 100 * 0.1 = 10: 平均下来,你会抽到10次红色小球。
  • Var(X) = 100 * 0.1 * 0.9 = 9: 抽到红色小球次数的波动大小为9。

公式探索与推演运算

相似公式对比

  1. 泊松分布

    • 公式: P ( X = k ) = λ k e − λ k ! P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} P(X=k)=k!λkeλ
    • 适用条件: 当n很大,p很小,且np=λ时,二项分布近似于泊松分布。
    • 差异: 泊松分布用于描述稀有事件的概率分布,而二项分布用于描述有限次试验的成功次数。
  2. 几何分布

    • 公式: P ( X = k ) = p ( 1 − p ) k − 1 P(X=k) = p(1-p)^{k-1} P(X=k)=p(1p)k1
    • 适用条件: 描述首次成功前所需的试验次数。
    • 差异: 几何分布关注的是首次成功的时间,而二项分布关注的是多次试验中的成功次数。
  3. 负二项分布

    • 公式: P ( X = k ) = ( k + r − 1 r − 1 ) p r ( 1 − p ) k P(X=k) = \binom{k+r-1}{r-1} p^r (1-p)^k P(X=k)=(r1k+r1)pr(1p)k
    • 适用条件: 描述在第r次成功前所需的试验次数。
    • 差异: 负二项分布关注的是第r次成功的时间,而二项分布关注的是多次试验中的成功次数。
在进行二项分布的参数估计时,有哪些常见的方法和挑战?

在进行二项分布的参数估计时,常见的方法包括最大似然估计(MLE)、贝叶斯估计、正态近似法和Clopper-Pearson精确置信区间法等。这些方法各有优缺点:

  1. 最大似然估计(MLE) :MLE是通过求使得似然函数最大的参数值来进行点估计的方法。这种方法简单直观,但在某些情况下可能不适用或产生偏误。

  2. 贝叶斯估计:贝叶斯估计考虑了先验分布,通过求使得后验概率最大的参数值来进行点估计。这种方法可以结合先验知识,但需要选择合适的先验分布。

  3. 正态近似法:当样本量较大时,二项分布可以用正态分布来近似,从而简化计算过程。然而,这种近似在小样本情况下可能不够准确。

  4. Clopper-Pearson精确置信区间法:这是一种基于精确计算的置信区间方法,适用于各种样本大小,但计算复杂度较高。

在进行二项分布参数估计时面临的挑战主要包括:

  1. 大规模数据集上的高效估计:随着数据规模的增加,如何在大规模数据集上高效地估计参数成为一个重要挑战。

  2. 多变量分布的应用:如何利用多变量分布在数据分析中也是一个重要的研究方向。

  3. 理论与实际应用的结合:虽然有多种方法可以用于二项分布参数的估计,但在实际应用中如何选择合适的方法并确保其可靠性和有效性仍是一个挑战。

如何使用计算机编程实现二项分布的概率质量函数、均值和方差的计算?

要使用计算机编程实现二项分布的概率质量函数、均值和方差的计算,可以使用Python语言,并利用其科学计算库如NumPy和SciPy。以下是具体的实现步骤:

1. 概率质量函数(PMF)

二项分布的概率质量函数(PMF)公式为:
P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} P(X=k)=(kn)pk(1p)nk
其中,$ n $ 是试验次数,$ p $ 是每次试验成功的概率,$ k $ 是成功的次数。

Python代码示例:
import numpy as np

def binomial_pmf(n, p, k):
    from scipy.stats  import comb
    return comb(n, k) * (p ** k) * ((1 - p) ** (n - k))

# 示例:计算在10次试验中成功3次的概率
n = 10
p = 0.5
k = 3
print(binomial_pmf(n, p, k))

这段代码使用了scipy.stats 中的comb函数来计算组合数。

2. 均值

二项分布的均值公式为:
μ = n p \mu = np μ=np

Python代码示例:
def binomial_mean(n, p):
    return n * p

# 示例:计算在10次试验中成功的期望次数
n = 10
p = 0.5
print(binomial_mean(n, p))

这个函数直接返回了均值的计算结果。

对于大样本量的二项分布问题,存在哪些高效的近似方法?

对于大样本量的二项分布问题,存在几种高效的近似方法:

  1. 正态分布近似:根据中心极限定理,当样本量足够大时,二项分布可以近似为正态分布。这种方法在计算上比直接使用二项分布公式要简单得多,因为正态分布可以用均值和标准差来描述。

  2. 泊松分布近似:当试验次数 ( n ) 很大且成功概率 ( p ) 较小时,二项分布可以用泊松分布来近似。泊松定理提供了一种方便的计算方式,尤其适用于那些事件发生的频率较高的情况。

这两种近似方法都基于统计学中的渐近理论,即在大样本情况下,某些复杂分布可以通过更简单的分布来近似。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2130472.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Android安全】Ubuntu 16.04安装GDB和GEF

1. 安装GDB sudo apt install gdb-multiarch 2. 安装GEF(GDB Enhanced Features) 官网地址:https://github.com/hugsy/gef 2.1 安装2021.10版本 但是在Ubuntu 16.04上,bash -c "$(curl -fsSL https://gef.blah.cat/sh)"等命令不好使&…

如何用 OBProxy 实现 OceanBase 的最佳路由策略

引言 OBProxy,即OceanBase Database Proxy,也简称为ODP,是 OceanBase数据库的专属服务代理。通过应用OBProxy,由后端OceanBase集群的分布式特性所带来的复杂性得以屏蔽,从而使得访问分布式数据库的体验如同访问单机数…

linux上用yolov8训练自己的数据集(pycharm远程连接服务器)

pycharm如何远程连接服务器,看之前的文章 首先去GitHub上下载项目地址,然后下载预训练模型放到项目主目录下 然后下载数据集,我这有个推荐的数据集下载网站,可以直接下载yolov8格式的数据集(还支持其他格式的数据集&a…

进程间通信-命名管道

目录 原理 代码 简单通信 回归概念 原理 mkfifo 是 Linux 系统中的一个命令,用于创建命名管道(named pipe),也称为 FIFO(First In, First Out)。命名管道是一种特殊类型的文件,用于进程间通…

从0到1!本地部署一个大语言模型!完整方法!

要想从零开始部署一个**大语言模型(LLM)**到本地,不仅仅是硬件上安装软件包,还需要对模型选择、优化和应用搭建有一定的理解。下面是一份完整教程,手把手带你走过如何在本地环境中部署LLM。 1. 了解部署需求与硬件准备…

交换机链路聚合

一、概述 通过链路聚合,可以提高链路的可靠性,提升链路带宽。链路具有一般有手工模式和LACP模式。 二、拓扑图 三、实操演练 1、手工模式 手工模式一般用于老旧、低端设备。 缺点: (1)为了使链路聚合接口正常工作…

brew install node提示:Error: No such keg: /usr/local/Cellar/node

打开本地文件发现Cellar目录下无法生成 node文件,应该是下载时出现问题,重复下载无法解决问题,只能重新安装brew。 步骤1(安装 brew): /bin/zsh -c “$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/ra…

打造高效实时数仓,从Hive到OceanBase的经验分享

本文作者:Coolmoon1202,大数据高级工程师,专注于高性能软件架构设计 我们的业务主要围绕出行领域,鉴于初期采用的数据仓库方案面临高延迟、低效率等挑战,我们踏上了探索新数仓解决方案的征途。本文分享了我们在方案筛选…

uniapp离线(本地)打包

安卓离线打包 注意:jdk建议选择1.8 下载Android Studio配置gradle仓库地址 第一步:先下载对应的版本,进行压缩包解压 第二步:在电脑磁盘(D盘),创建文件夹存放压缩包并进行解压,并创…

8.8canny算子检测

目录 实验原理 示例代码 运行结果 实验原理 在OpenCV中,Canny边缘检测是一种广泛使用的边缘检测算法。它是由John F. Canny在1986年提出的,并且因其性能优良而被广泛应用。在OpenCV中,Canny边缘检测是通过Canny函数实现的。 函数原型 v…

【爬虫软件】小红书按关键词批量采集笔记,含笔记正文、转评赞藏等!

一、背景介绍 1.1 爬取目标 熟悉我的小伙伴都了解,我之前开发过2款软件: 【GUI软件】小红书搜索结果批量采集,支持多个关键词同时抓取! 【GUI软件】小红书详情数据批量采集,含笔记内容、转评赞藏等! 现在…

HuggingFists算子能力扩展-PythonScript

HuggingFists作为一个低代码平台,很多朋友会关心如何扩展平台算子能力。扩展平台尚不支持的算子功能。本文就介绍一种通过脚本算子扩展算子能力的解决方案。 HuggingFists支持Python和Javascript两种脚语言的算子。两种语言的使用方式相同,使用者可以任选…

C++速通LeetCode简单第3题-相交链表

简单解: /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode(int x) : val(x), next(NULL) {}* };*/ class Solution { public:ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {Li…

ACL-latex模板中参考文献出现下划线---由于宏包的冲突

% \usepackage{ulem} %加入后造成参考文献有下划线,正常情况是没有的。 别的包也可能造成此情况,可以仔细检查。 如下图所示: \usepackage{ulem}在LaTeX中的作用主要是提供了一系列用于文本装饰和强调的命令。ulem宏包由Donald Arseneau…

移动订货小程序哪个好 批发订货系统源码哪个好

订货小程序就是依托微信小程序的订货系统,微信小程序订货系统相较于其他终端的订货方式,能够更快进入商城,对经销商而言更为方便。今天,我们一起盘点三个主流的移动订货小程序,看看哪个移动订货小程序好。 第一、核货宝…

Redis搭建集群

功能概述 Redis Cluster是Redis的自带的官方分布式解决方案,提供数据分片、高可用功能,在3.0版本正式推出。 使用Redis Cluster能解决负载均衡的问题,内部采用哈希分片规则: 基础架构图如下所示: 图中最大的虚线部分…

AI基础 L19 Quantifying Uncertainty and Reasoning with Probabilities I 量化不确定性和概率推理

Acting Under Uncertainty 1 Reasoning Under Uncertainty • Real world problems contain uncertainties due to: — partial observability, — nondeterminism, or — adversaries. • Example of dental diagnosis using propositional logic T oothache ⇒ C av ity • H…

Tomact的基本使用

一.Web服务器 Web服务器是一个软件程序,对HTTP协议的操作进行封装,使得程序员不必直接对协议进行操作,让web开发更加便捷.主要功能是"提供网上信息浏览服务" 二.将Demo程序部署到webapps 直接复制进webapps目录,然后打开浏览器来进行访问 基于tomact服务器部署的项…

PCL 读取STL文件转换为点云

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 3.1原始点云 3.2数据显示 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总(长期更新) 一、概述…

结构开发笔记(八):solidworks软件(七):装配图中让摄像头绕轴旋转起来

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/142176639 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…