【Python 数据分析学习】Pandas基础与应用(1)

news2025/1/23 6:10:20

题目

  • 1 Pandas 简介
    • 1.1 主要特征
    • 1.2 Pandas 安装
  • 2 Pandas中的数据结构
    • 2.1 Series 数据结构和操作
      • 2.1.1 Series的数据结构
      • 2.1.2 Seres的操作
    • 2.2 DataFrame 数据结构和操作
      • 2.2.1 DataFrame 数据结构
      • 2.2.2 Dataframe 操作
      • 2.2.3 DateFrame 的特殊操作
    • 2.3 Series 和 DataFrame 的联系和转换
      • 2.3.1 联系
      • 2.3.2 {s.name: s.values}型转换
      • 2.3.3 {s.name: s}型转换
  • 3 pandas中数据的基本操作
    • 3.1 数据的写入
      • 3.1.1 写入 csv 文件
      • 3.1.2 写入excel文件
      • 3.1.3 写入 json文件
    • 3.2 数据的读取
      • 3.2.1 语法格式
      • 3.2.2 读取 csv 文件
      • 3.2.3 读取 excel 文件
    • 3.3 数据的编辑
      • 3.3.1 数据的增加
      • 3.3.2 删除数据
      • 3.3.3 修改数据
    • 3.4 数据的合并
      • 3.4.1 merge函数
      • 3.4.2 concat 函数

1 Pandas 简介

1.1 主要特征

Pandas 是Python中的一个高效易用的数据结构和数据分析的第三方库。Pandas是Python中数据分析的基础,旨在成为最实用最便利的开源数据分析的工具。其主要特性如下:

  • 善于处理浮点数和非浮点数的数据缺失(用NaN来表示);
  • 大小可变:数据的行列能够从DataFrame或者更高维度的数据结构中添加或者删除;
  • 自动数据对齐:目标会被显式地根据标签对齐,使用者也可以忽略标签,直接利用DataFrame、Series来自动对齐;
  • 功能强大,灵活的分组功能,可对数据执行拆分-应用-组合的一系列操作,以便聚合和转换数据;
  • 可以很方便地把其他Python和NumPy的杂乱的数据结构转换成DataFrame对象;
  • 基于智能标签的切片、花式索引和子集化大数据集;
  • 直观的合并和连接数据集;
  • 灵活的重塑(reshape)和数据集的旋转;
  • 轴的分层标签(每个标记可能有多个标签);
  • 强大的IO工具,用于从原始文件(CSV)、Excel文件、数据库中加载数据,以及从超快速HDF5格式保存/加载数据;
  • 时间序列-特定功能:日期范围生成和频率转换、移动窗口统计、移动窗口线 性回归、日期移动和滞后等。

1.2 Pandas 安装

Anaconda环境中默认已集成了Numpy和Pandas等第三方工具包,如想自行安装,可使用pip命令或conda命令。

安装包方法:

  1. pip命令,语法格式为:pip install pandas
  2. conda命令,语法格式为:conda install pandas

还可以使用conda list pandas查看已安装的pandas包的版本信息。

2 Pandas中的数据结构

2.1 Series 数据结构和操作

2.1.1 Series的数据结构

Series 是一个一维的标签数组,一种类似于一维数组的对象,它由一组数据以及一组与之相对应的数据标签(即索引)组成。创建Series的语法为:
Series = pd.Series(data, index=index, name=name, dtype=dtype)

参数说明:

  • data: 一维数组或列表,包含 Series 的数据。
  • index: 可选参数,索引标签。如果未指定,将默认使用整数索引(从 0 开始)。
  • name: 可选参数,为 Series 设置名称。
  • dtype: 可选参数,指定数据类型。如果未指定,Pandas 会根据 data 自动推断数据类型。
    在这里插入图片描述
  1. 使用标量创建Series:index参数必须设置,如未设置index,默认状态时生成只有一组数据(1个data和一个索引)的Series。

代码演示:

s1 = pd.Series(66, index = [1,2,3])
print("数据为标量,索引为[1,2,3],会按照索引的数目用该标量补充:\n",s1)

s2 = pd.Series(66)
print("数据为标量,设置index,默认状态时生成只有一组数据:\n",s2)

在这里插入图片描述

  1. 列表或数组创建Series,自定义内容

代码演示:

s1 = pd.Series(data = np.arange(5,10))
print("数组或列表创建Series,index默认,索引默认从0开始:\n",s1)

print("--------------")
s2 = pd.Series(data = np.arange(1,6),index = ['A','B','C','D',"E"], name = "自然数", dtype = "float32")
print("自定义索引、数据类型,命名为自然数:\n",s2)

在这里插入图片描述

  1. 字典创建Series:当index默认时,会自动以字典的key作为索引,并按照排序后排列。自定义索引时,字典中的key和标签不匹配就不显示value,多出的标签填空值。
    代码演示:
dic = {'b':6, 'c':3, 'a':2, 'w': 8}
s1 = pd.Series(data =dic )
print("字典创建Series,index默认:\n",s1)

print("--------------")
s2 = pd.Series(data = dic,index = ['a','b','c','d'])
print("字典创建Series,index为 ['A','B','C','D']:\n",s2)
print("注:字典中的key和标签不匹配就不显示value,多出的标签填空值")

在这里插入图片描述

2.1.2 Seres的操作

对于Series对象的使用,主要取决于其创建对象的相关操作。由于数组和字典都可以用来创建Series,所以Series除了具备基本属性外,还适用数组、字典的相关操作。Series支持许多数组类型的操作。如:索引、切片等,以及许多NumPy的函数也适用于Series,其返回值仍是Series

  1. 显示Series对象的属性。Series的常用属性包括values和index,还有name和index.name 属性。

代码演示:

s = pd.Series(data = np.arange(1,7),index = np.arange(1,7),name = "学习", dtype = "int32")
print("Series:\n",s)
print("------------")
print("Serise的属性values:",s.values)
print("Serise的属性index:",s.index)
print("Serise的属性name:", s.name)
print("Serise的属性dtype:", s.dtype)

在这里插入图片描述

  1. Series支持数组类型的操作。如:索引(索引的是标签对应的值)切片(切片的是位置对应的值,第一个值的位置是0) 等。
    索引:索引的是 标签对应的值
    代码演示:
dic = {'b':6, 'c':3, 'a':2, 'w': 8}
s1 = pd.Series(data =dic )
print("Series:\n",s1)
print("用索引a,s1['a']:", s1['a'])

print("------------")
s2 = pd.Series(data = np.arange(5,10),index = np.arange(1,6))
print("Series:\n",s2)
print("用索引1,实际打印出的是标签对应的数,s2[1]:", s2[1])

print("------------")
s3 = pd.Series(data = [1,2,3,4], index = [6,8,6,8])
print("用索引6,实际打印的是标签全为6 index和value :\n",s3[6])

在这里插入图片描述

切片:
代码演示:

s2 = pd.Series(data = np.arange(5,10),index = np.arange(1,6))
print("Series:\n",s2)
print("用切片 s2[2:5] ,位置2-位置4对应的 index和value :\n",s2[2:5])
print("用切片 s2[0:1] ,位置0对应的 index和value :\n",s2[0:1])

在这里插入图片描述

  1. Series还适用于字典的基本操作,如in()和get()。in()用来查看Series中是否有某个标签,返回值为True或False;get() 来索引不存在的标签,有该标签返回对应的value,反之返回值为Nan。

代码演示:

s = pd.Series(data = ['a','b','c','d','e'],index = np.arange(1,6))
print("Series:\n",s)
print( "索引标签 1, 'b' in s:", 1 in s)
print( "索引标签 9, 'z' in s:", 9 in s)
print("索引标签 1 ,s.get(1),直接返回对应的值:", s.get(1) )
print("索引标签‘j' ,s.get('j'),每该标签返回值为Nan:", s.get('a') )

在这里插入图片描述

  1. Series还支持一些向量化操作。如两个Series相加、数乘等。

代码演示:


s1 = pd.Series(data = np.arange(1,6))
s2 = pd.Series(data = np.arange(9,4,-1))
print("Series:\n",s1)
print("Series:\n",s2)
#加减乘车类似
print("s1 + s2:\n",s1+s2)

在这里插入图片描述

2.2 DataFrame 数据结构和操作

2.2.1 DataFrame 数据结构

DataFrame是一个结构类似于二维数组或表格的数据类型,可以看作一张表格,它含有一组有序的列,每一列的数据类型都是一致的。DataFrame类对象由索引和数据组成,与Series类对象相比,该对象有两组索引,分别是行索引(index)和列索引(columns)。DataFrame的数据结构如下图所示。

创建DataFrame的语法为:
pandas.DataFrame(data = data, index = index, columns= columns, dtype= dtype, copy = copy)

参数说明:

  • data: 可以是多种类型的数据结构,如 NumPy ndarray, dict, nested list, Series, another DataFrame 等。
  • index: 行标签的数组,长度必须与 data 的长度匹配。如果未提供,则自动使用整数索引。
  • columns: 列标签的数组。如果 data 是一个 dict 并且 columns 没有提供,则使用字典的键作为列名。
  • dtype: 数据类型,可选,默认为 None,表示自动检测数据类型。
  • copy: 如果为 True,则对传递的数据进行深拷贝。
    在这里插入图片描述
  1. 由数组构建DataFrame。系统自动分配列索引和行索引,也可以自定义。

代码演示:

data = np.arange(0,9).reshape(3,3)
df1 = pd.DataFrame(data = data)
print("默认行索引和列索引:\n",df1)
print("------------")
df2 = pd.DataFrame(data = data,index = ['a','b','c'],columns = ['A','B','C'])
print("自定义行索引和列索引:\n",df2)

在这里插入图片描述

  1. 列表类型是字典时,一般不需另外指定列的索引,会自动采用字典的key竖向作为列索引,并排序后输出,但支持指定行索引。

注意:字典值的长度必须相同,否则会报错。

代码演示:

dic = { "name":['Tom','jacker','dog'], "age":[18, 19, 18], "number":[111,222,333]}
df = pd.DataFrame(data = dic)
print(df)

在这里插入图片描述

  1. DataFrame的常用属性包括values、index、columns、dtypes、size、ndim和shape等,分别可以显示DataFrame的数据、索引、列名、类型、元素个数、维度和形状等。
属性属性含义
.values显示DataFrame的数据
.index显示DataFrame的索引
.columns显示DataFrame的列名
.dtypes显示DataFrame的数据类型
.sizes显示DataFrame元素个数
.ndim显示DataFrame的维度数
.shape显示DataFrame的形状(x行y列)

2.2.2 Dataframe 操作

pandas.DataFrame 对象提供了两种主要的方式来访问和操作数据:.loc.iloc。这两种方法分别基于标签和基于位置来进行索引。

我们定义一个DataFrame对象:
dic = { "name":['Tom','jacker','dog'], "age":[18, 19, 18], "number":[111,222,333]}
df = pd.DataFrame(data = dic)
访问数据的方式说明
df[ ]只能索引一个列的标签
df.loc[ ][ ]df.loc[行的标签][列的标签]索引某个值
df.loc[ ]df.loc[]只能索引一个行的标签
df.loc[ [ ] ]df.loc[[行标签的列表]]索引n行的标签
df.loc[ : ,[ ] ]df.loc[:,[列标签的列表]]索引m列的标签
df.loc[ [ ] , [ ] ]df.loc[[行标签的列表][列标签的列表]]索引n行m列
df.iloc[ [ ], [ ] ]df.iloc[行标签的位置][列标签的位置]索引n行m列

代码演示:

dic = { "name":['Tom','jacker','dog'], "age":[18, 19, 18], "number":[111,222,333]}
df = pd.DataFrame(data = dic)
print(df)
print("------------")
print("df[]只能索引一个列的标签:\n",df["name"])
print("------------")
print("df.loc[行的标签][列的标签]索引某个值:",df.loc[0]['name'])
print("------------")
print("df.loc[]只能索引一个行的标签:\n:",df.loc[1])
print("------------")
print("df.loc[[行标签的列表]]索引行的标签:\n:",df.loc[[1, 2]])
print("------------")
print("df.loc[:,[列标签的列表]]索引m列的标签:\n:",df.loc[:,["name", "age"]])
print("------------")
print("df.loc[[行标签的列表][列标签的列表]]索引n行m列:\n",df.loc[[1,2],['name','number']])
print("------------")
print("df.iloc[行标签的位置][列标签的位置]索引n行m列,:\n",df.iloc[[1,2],[1,2]])

在这里插入图片描述

2.2.3 DateFrame 的特殊操作

加入条件后的操作。
代码演示:

dic = { "name":['Tom','jacker','dog'], "age":[18, 19, 18], "number":[111,222,333]}
df = pd.DataFrame(data = dic)

data1 = df.loc[:,"name":"number"]
print("使用切片 'name':'number' :\n",data1)
print("-----------")
data2 = df.loc[df['age']<19,"name":"number"]
print('使用条件和切片 .loc[df["age"]<19,"name":"number"]:\n',data2)

在这里插入图片描述

2.3 Series 和 DataFrame 的联系和转换

2.3.1 联系

  1. DataFrame 的列是 Series:
    DataFrame 的每一列实际上就是一个 Series。这意味着你可以通过列名来获取 DataFrame 中的某一列,并且得到的结果将是一个 Series。
  2. 转换 Series 为 DataFrame:
    可以通过将一个 Series 转置(使用 .to_frame() 或 .to_frame(name) 方法)或将多个 Series 放入一个字典中然后创建 DataFrame 来从 Series 创建 DataFrame。

2.3.2 {s.name: s.values}型转换

把Seirs对象的名字作为DataFrame的列索引,Series对象的值作为DataFrame的值,index索引默认。
在这里插入图片描述
代码演示:

s1 = pd.Series(data = np.arange(1,4),name = "序列")
s2 = pd.Series(data = ["李明","李华", "小明"], name = "name")
df = pd.DataFrame(data = {s1.name:s1.values, s2.name: s2.values})
print("打印 s1 :\n",s1)
print("打印 s2 :\n",s2)
print("打印 s1和s2 的组合转换 :\n",df)

在这里插入图片描述

2.3.3 {s.name: s}型转换

这种转换会把 相同的行标签 对应的值放在同一行(自动对齐),对齐后空缺值用NaN补全。

代码演示:

s1 = pd.Series(data = np.arange(1,4), index = [1,2,3],name = "序列")
s2 = pd.Series(data = ["李明","李华", "小明"],index = [1,2,3] ,name = "name")
df1 = pd.DataFrame(data = {s1.name:s1, s2.name: s2})
print("打印 s1 :\n",s1)
print("打印 s2 :\n",s2)
print("s1和s2的索引都一致:\n",df1)
print("------------")

s3 = pd.Series(data = np.arange(1,4), index = [1,2,3],name = "序列")
s4 = pd.Series(data = ["李明","李华", "小明"],index = [2,3,4] ,name = "name")
df2 = pd.DataFrame(data = {s3.name:s3, s4.name: s4})
print("打印 s3 :\n",s3)
print("打印 s4 :\n",s4)
print("s3和s4的索引不一致:\n",df2)

在这里插入图片描述

3 pandas中数据的基本操作

3.1 数据的写入

3.1.1 写入 csv 文件

CSV(逗号分隔值)文件是一种常见的数据交换格式。Pandas 提供了 to_csv 方法来将 DataFrame 写入 CSV 文件(csv文件其实也是一个文本文件,用excel直接打开后为表格形式)。

语法格式:pd.to_csv(路径,index,encoding)

  • index=False:默认情况下,Pandas 会在 CSV 文件中包含索引列。如果你不想包含索引列,可以设置 index=False。
  • encoding=‘utf-8’:指定输出文件的编码,默认是 utf-8,但也可以指定其他编码,如 gbk。

代码演示:

data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['北京', '上海', '广州']
}

df = pd.DataFrame(data)
# 写入 CSV 文件
df.to_csv('output.csv')

用记事本打开:
在这里插入图片描述
用excel打开:
在这里插入图片描述

3.1.2 写入excel文件

excel 文件的扩展名是 .xlsx ,exce文件是表格文件。

代码演示:

data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['北京', '上海', '广州']
}

df = pd.DataFrame(data)
# 写入 excel 文件
df.to_excel('output.xlsx', index=False)

在这里插入图片描述

3.1.3 写入 json文件

JSON(JavaScript 对象表示法)是一种轻量级的数据交换格式。Pandas 使用 to_json 方法来将 DataFrame 写入 JSON 文件。

代码演示:

data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['北京', '上海', '广州']
}

df = pd.DataFrame(data)
# # 写入 JSON 文件
df.to_json('output.json', orient='records', force_ascii=False)

  • orient=‘records’:指定 JSON 数据的格式。‘records’ 使得每一行成为一个独立的对象,整个 DataFrame 被表示为一个对象数组。
  • force_ascii=False:允许非 ASCII 字符直接写入,这样中文字符不会被转义。

在这里插入图片描述

3.2 数据的读取

3.2.1 语法格式

Pandas支持多种文件格式的数据读取与写入,包括txt、Excel、csv、sql、table、html和json等众多格式。读取文件的语法格式为:

File = pd.read_xxx(file, encoding)

其中,read_xxx()函数的选择取决于要读取文件的格式,在实际操作中可以tab键补全函数;file是指将要读取的文件路径encoding是指读取文件的编码格式,一般常用的有utf-8、utf-16、gbk及gb2312。
Dataframe数据也可以保存在各种格式的文件中,需要使用的函数是.to_xxx()函数。

在这里插入图片描述
在这里插入图片描述

3.2.2 读取 csv 文件

将CSV中的数据转换为DataFrame对象是非常便捷的。和一般文件读写不一样, 它不需要你做打开文件、读取文件、关闭文件等操作。相反,您只需要一行代码就可以完成上述所有步骤,并将数据存储在DataFrame中。

  1. csv文件实际也是一个文本文件,读取.txt 文件用的是读取csv文件的方式。csv文件的分隔符通常为‘ ,’,默认情况下我们不用设置sep。

分隔符为‘,’:
在这里插入图片描述
代码演示:

df = pd.read_csv("test.txt",encoding = "utf-8")
print(df)

在这里插入图片描述

  1. ①. csv文件有表头并且是第- -行,那么names和header都无需指定;
    ②. csv文件有表头、但表头不是第- -行,可能从下面几行开始才是真正的表头和数据,这个时候指定header即可;
    ③. csv文件没有表头, 全部是纯数据,那么我们可以通过names手动生成表头;
    ④. csv文件有表头、但是这个表头你不想用,这个时候同时指定names和header。先用header选出表头和数据,然后再用names将表头替换掉,就等价于将数据读取进来之后再对列名进行rename;

  2. 改文件的索引(index_col),把时间改为时间戳

在这里插入图片描述

代码演示:

df = pd.read_csv("test.txt",index_col = "birthday")
print("打印df对象:\n",df)
print("此时的行索引为:",df.index)
print("object 类型是整体类型,不是时间戳")
print("---------")
print("把整体类型的时间改为时间戳,时间戳是pandas可以直接索引的类型")
df.index = pd.to_datetime(df.index)
print(df.index)
print("---------")
print("打印df对象:\n",df)
print("打印df中2003年出生的同学:\n",df.loc["2003"])

在这里插入图片描述

3.2.3 读取 excel 文件

  1. 表格完整,直接读取
    在这里插入图片描述

代码演示:

df = pd.read_excel("test.xlsx")
print(df)

在这里插入图片描述

  1. 表格没有表头,读取时会把数据第一行作为表头,那我们应该怎么处理呢?设置参数header = None。如果想自定义一个表头,需要设置参数header = None,name = []。

在这里插入图片描述
不设置参数直接读取:
在这里插入图片描述
添加参数后的代码为:

df = pd.read_excel("test.xlsx",header= None, names= ["序列号","姓名", "年龄"])
print(df)

在这里插入图片描述

3.3 数据的编辑

3.3.1 数据的增加

  1. 可以通过给新列直接赋值来为DataFrame增加新列。默认状态下,新增加的列将排在原对象的后面;
  2. 可以使用insert()方法,将列添加到指定位置。用法为:df1.insert(iloc,column,value),其中,第一个参数是增加列的位置,第二个参数是增加列的索引,第三个位置是增加列的内容。

代码演示:

s2 = pd.Series(data = ["李明","李华", "小明"], name = "name")
df = pd.DataFrame(data = {s1.name:s1.values, s2.name: s2.values})
print("打印df对象:\n",df)

df['test1'] = 66
print("增加一列test1:\n", df)
df['test2'] = pd.Series([77,77,77], index = np.arange(0,3))
print("增加一列test2:\n", df)
df.insert(1,'test3',df['test2'])
print('增加一列test3, 在位置1,名为test3,值为df["test2"]:\n', df)

在这里插入图片描述

3.3.2 删除数据

可用关键词 del 或者 pop() 方法删除指定列。还可以使用drop()方法,并设置axis参数指定要删除的是行还是列,默认不改变原数据,若要在原数据中删除,需要设置参数inplace=True。

代码演示:

s1 = pd.Series(data = np.arange(1,4),name = "序列")
s2 = pd.Series(data = ["李明","李华", "小明"], name = "name")
df = pd.DataFrame(data = {s1.name:s1.values, s2.name: s2.values})
df['test1'] = 66
df['test2'] = pd.Series([77,77,77], index = np.arange(0,3))
df.insert(1,'test3',df['test2'])

print("打印df对象:\n",df)
del df['test3']
print("删除数据test3:\n",df)
df.pop('test2')
print("删除数据test2:\n",df)

在这里插入图片描述

3.3.3 修改数据

对选定的数据直接赋值即可修改数据,数据的修改操作无法撤销,且是在原数据上直接修改,因此需要实现做好数据的备份。
代码演示:

s1 = pd.Series(data = np.arange(1,4),name = "序列")
s2 = pd.Series(data = ["李明","李华", "小明"], name = "name")
df = pd.DataFrame(data = {s1.name:s1.values, s2.name: s2.values})
print("打印df对象:\n",df)

df.loc[0,"name"] = "***"
print("打印修改后的df对象:\n",df)

在这里插入图片描述

3.4 数据的合并

3.4.1 merge函数

操作类似于sql里面的join,实现将2个DataFrame根据一些共有的列连接起来,内含多个参数,具体参数说明见下表。

在这里插入图片描述
注:inner 是值的交值作为链接键,outer是值的并集作为链接键,left是按左DataFrame的值作为链接键,right是按右DataFrame的值作为链接键。

默认状态:DataFrame合并时会以列名的交集作为连接键,连接方式是值的交集。

代码演示:

df1  = pd.DataFrame(data = {"score": [80,70,60,50], "name1": ["小明", "小红", "小刚", "小华"]})
df2  = pd.DataFrame(data = {"score": [70,60,50,60], "name2": ["李明", "李华", "张兵", "王军"]})

df = pd.merge(df1, df2)
print(df)

在这里插入图片描述

默认状态:DataFrame合并时会以列名的交集作为连接键,连接方式是值的交集。若连接列中含有多个相同的值,则采用笛卡尔积的形式进行连接。

在这里插入图片描述

设置 on 参数:当DataFrame的列交集不止一项时,可以通过参数 on 来指定连接键,可一个,也可多个。如果合并的DataFrame中还有相同的列索引,可以设置 suffixes 参数,实现对列名的区分。

代码演示 :

df1  = pd.DataFrame(data = {"score": [80,70,60,50], "name": ["小明", "小红", "小刚", "小华"]})
df2  = pd.DataFrame(data = {"score": [70,60,50,40], "name": ["李明", "李华", "张兵", "王军"]})

df = pd.merge(df1, df2, on = "score",suffixes = ["_一班", "_二班"])
print(df)

在这里插入图片描述

设置how参数:设置连接时的方式,默认状态下是inner(值交集)。当how取值outer时,会采用值并集式合并,缺项以NaN补齐。

代码演示:

df1  = pd.DataFrame(data = {"score": [80,70,60,50], "name": ["小明", "小红", "小刚", "小华"]})
df2  = pd.DataFrame(data = {"score": [70,60,50,40], "name": ["李明", "李华", "张兵", "王军"]})

df = pd.merge(df1, df2, on = "score",suffixes = ["_一班", "_二班"], how = "outer")
print(df)

在这里插入图片描述

3.4.2 concat 函数

主要实现一些简单的行合并和列合并的操作,其内含多个参数,具体见下表。
在这里插入图片描述

  1. 设置参数axis
    axis=0时,纵向合并;
    axis=1时,横向合并,空缺值补NaN。

代码演示:

df1  = pd.DataFrame(data = {"score": [80,70,60,50], "name1": ["小明", "小红", "小刚", "小华"]})
df2  = pd.DataFrame(data = {"score": [70,60,50,40], "name2": ["李明", "李华", "张兵", "王军"]})
df3  = pd.DataFrame(data = {"score": [50,60,30, 40], "name2": ["李明", "李华", "张兵", "王军"]})
#默认axis= 0,纵向合并
data1 = pd.concat([df1,df2])
print(data1)

#axis= 1,横向合并
data2 = pd.concat([df1,df2], axis= 1)
print(data2)

在这里插入图片描述

  1. 设置参数 ignore_index:
    True,不保留原来的索引;
    False(默认),保留原来的索引。

代码演示:

df1  = pd.DataFrame(data = {"score": [80,70,60,50], "name1": ["小明", "小红", "小刚", "小华"]})
df2  = pd.DataFrame(data = {"score": [70,60,50,40], "name2": ["李明", "李华", "张兵", "王军"]})

data = pd.concat([df1,df2], axis= 1)
print("原来的data:\n", data)
data = pd.concat([df1,df2], axis= 1, ignore_index= True)
print("ignore_index= True :\n", data)

在这里插入图片描述

  1. 设置join参数:连接键的方式
    当join参数设置为outer(默认),按并集方法合并,缺少的部分填充NaN。
    当join参数设置为inner时,以交集方式合并,即只合并公共的部分

代码演示:

df1  = pd.DataFrame(data = {"score": [80,70,60,50], "name1": ["小明", "小红", "小刚", "小华"]})
df2  = pd.DataFrame(data = {"score": [70,60,50,40], "name2": ["李明", "李华", "张兵", "王军"]})

# join默认是outer
data1 = pd.concat([df1,df2])
print(data1)

# join= "inner"
data2 = pd.concat([df1, df2],join= "inner")
print(data2)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2130224.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JMeter 入门之远程启动,服务模式,多机联测,负载均衡测试

本文主要介绍 JMeter 远程启动及使用多节点完成大并发测试&#xff08;负载均衡测试&#xff09;&#xff0c;主打一个压力山大&#xff0c;借用 黑神话&#xff1a;悟空 的技能来描述就是远程开大&#xff0c;释放猴子猴孙技能。 搜了一些 jmeter 的案例或教程&#xff0c;讲的…

Windows10 如何设置电脑ip

1、首先打开控制面板 或者使用WinR 输入control 找到网络和Internet 点击网络和共享中心 点击更改适配器设置 找到你要需要设置的网络&#xff0c;右键 如果你的网口特别多&#xff0c;不确定是哪一个&#xff0c;拔插一下看看哪个以太网的标志是断开状态就可以了 点击属性…

★ C++基础篇 ★ string类的实现

Ciallo&#xff5e;(∠・ω< )⌒☆ ~ 今天&#xff0c;我将继续和大家一起学习C基础篇第五章下篇----string类的模拟实现 ~ 上篇&#xff1a;★ C基础篇 ★ string类-CSDN博客 C基础篇专栏&#xff1a;★ C基础篇 ★_椎名澄嵐的博客-CSDN博客 目录 一 基础结构 二 迭代器 …

即插即用篇 | YOLOv8 引入组装式Transformer模块AssembleFormer | arXiv 2024

本改进已同步到YOLO-Magic框架! 摘要—早期检测和准确诊断可以预测恶性疾病转化的风险,从而增加有效治疗的可能性。轻微的症状和小范围的感染区域是一种不祥的警告,是疾病早期诊断的重中之重。深度学习算法,如卷积神经网络(CNNs),已被用于分割自然或医学对象,显示出有希…

JVM源码解析

一、java虚拟机概述 1. java程序的跨平台性 之前的话&#xff0c;通过Linux或者Windows开发&#xff0c;当需要跨平台时&#xff0c;程序不能运行。java出现后&#xff0c;产生了jvm&#xff0c;针对不同的操作系统&#xff0c;产生了不同的java虚拟机。 在Java虚拟机中执行…

3D云渲染农场为何怎么贵?主要消耗成本介绍

随着对高质量3D动画的需求持续增长&#xff0c;云渲染农场对于旨在以高效速度生产高质量视觉效果的工作室来说变得至关重要。然而&#xff0c;用户经常想知道为什么渲染农场的价格如此之高&#xff0c;理解背后的原因可以帮助艺术家做出更好的选择。 什么是云渲染农场&#xff…

【Hot100】LeetCode—72. 编辑距离

目录 1- 思路题目识别动规五部曲 2- 实现⭐72. 编辑距离——题解思路 3- ACM 实现 原题链接&#xff1a;72. 编辑距离 1- 思路 题目识别 识别1 &#xff1a;两个字符串之间相互转换&#xff0c;增、删、替换 最少的操作次数 动规五部曲 1- 定义 dp 数组 dp[i][j] 代表&…

市面上有哪些高效财税自动化软件

随着科技的不断发展&#xff0c;财税自动化软件已成为许多企业和个人不可或缺的工具。这些软件可以大大提高财税处理的效率&#xff0c;减少人工错误&#xff0c;并确保合规性。目前市场上有许多高效财税自动化软件可供选择&#xff0c;本文金智维将介绍一些市场上比较受欢迎的…

可信的人类与人工智能协作:基于人类反馈和物理知识的安全自主驾驶强化学习

可信的人类与人工智能协作&#xff1a;基于人类反馈和物理知识的安全自主驾驶强化学习 Abstract 在自动驾驶领域&#xff0c;开发安全且可信赖的自动驾驶策略仍然是一项重大挑战。近年来&#xff0c;结合人类反馈的强化学习&#xff08;RLHF&#xff09;因其提升训练安全性和…

【EI会议征稿通知】第五届机械、电子电气与自动化控制国际学术会议(METMS 2025)

第五届机械、电子电气与自动化控制国际学术会议&#xff08;METMS 2025&#xff09; 2025 5th International Conference on Mechanical, Electronics and Electrical and Automation Control 随着全球技术进步与工业需求的不断升级&#xff0c;机械、电子电气和自动化控制技…

网络安全实训九(域环境的创建及其信息收集)

1 创建域环境 1.1 在WindowsServer2008上添加域服务 1.2 安装成功 1.3 选择蓝色字体&#xff1a;运行Active Directory域服务安装向导(dcpromo.exe) 1.4 记住新建的林&#xff0c;在安装的时候点击下一步即可 1.5 完成安装 1.6 在windows7上加入域&#xff0c;点击网络ID 1.7 …

力扣题解2576

大家好&#xff0c;欢迎来到无限大的频道。 今日继续给大家带来力扣题解。 题目描述&#xff1a; 给你一个下标从 0 开始的整数数组 nums 。 一开始&#xff0c;所有下标都没有被标记。你可以执行以下操作任意次&#xff1a; 选择两个 互不相同且未标记 的下标 i 和 j &am…

SprinBoot+Vue民宿预约微信小程序的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍&#xff1a;CSDN认证博客专家&#xff0c;CSDN平台Java领域优质…

[羊城杯 2020]Blackcat1

知识点&#xff1a;数组加密绕过 进入页面熟悉的web三部曲&#xff08;url地址&#xff0c;web源代码&#xff0c;web目录扫描&#xff09; url地址没有什么东西去看看源代码. 这有一个mp3文件点一下看看. 在最后面发现了 PHP源码. if(empty($_POST[Black-Cat-Sheriff]) || em…

Deep Learning-Based Object Pose Estimation:A Comprehensive Survey

论文&#xff1a;https://arxiv.org/pdf/2405.07801v3 项目&#xff1a;https://github.com/CNJianLiu/Awesome-Object-Pose-Estimation 年份&#xff1a;2024 方向&#xff1a;姿态估计 1. 目标姿态估计定义 估计图像中目标相对于相机的姿态&#xff0c; 目标姿态估计是增…

【网络安全】服务基础第二阶段——第五节:Linux系统管理基础----Linux常见应用服务(Apache、数据库)

在Linux系统中&#xff0c;有许多常见的应用服务&#xff0c;它们用于执行各种任务&#xff0c;如网页托管、数据库管理、文件传输等。 Apache HTTP Server&#xff1a;用于托管网站和Web应用程序的Web服务器。Nginx&#xff1a;高性能的Web服务器和反向代理服务器&#xff0c…

11Python的Pandas:可视化

Pandas本身并没有直接的可视化功能&#xff0c;但它与其他Python库&#xff08;如Matplotlib和Seaborn&#xff09;无缝集成&#xff0c;允许你快速创建各种图表和可视化。这里是一些使用Pandas数据进行可视化的常见方法&#xff1a; 1. 使用Matplotlib Pandas中的plot()方法…

YoloV10改进策略:BackBone改进|注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用

摘要 在CAFM模型的基础上进行二次创新,我成功地开发了一个性能显著提升的改进版模型。这一创新不仅优化了特征提取和融合的方式,还极大地提高了模型的泛化能力和准确性。为了验证其有效性,我们将这一改进应用于流行的目标检测算法YoloV10,并取得了显著的精度提升。这一改进…

【笔记】二维DP

文章目录 例题lanqiao1536数字三角形题目描述输入描述输出描述解题思路选取状态1代码1选取状态2代码2 lanqiao 389摆花题目描述输入描述解题思路输出描述代码 lanqiao3711选数异或题目描述输入描述输出描述解题思路 lanqiao3348可构造的序列总数 二维DP和普通DP本质相同&#x…

ios 用JXCategoryView 库实现tab滑动切换viewController

先Pod导入安装 pod JXCategoryView.m文件 // // OrderViewController.m // scxhgh2 // // Created by xmkjsoft on 2024/9/9. //#import "OrderViewController.h" #import "NavigationBarUtils.h" #import <JXCategoryView/JXCategoryView.h>#im…