机器学习--神经网络

news2024/11/8 4:43:01

神经网络

计算

  神经网络非常简单,举个例子就理解了(最后一层的那个写错了,应该是 a 1 ( 3 ) a^{(3)}_1 a1(3)):

在这里插入图片描述

n o t a t i o n notation notation a j ( i ) a^{(i)}_j aj(i) 表示第 i i i 层的第 j j j 个单元。 w ( j ) w^{(j)} w(j) 表示权重矩阵,控制从 j j j 层到 j + 1 j + 1 j+1 层的映射。

  其中:

a 1 ( 2 ) = g ( w 10 ( 1 ) x 0 + w 11 ( 1 ) x 1 + w 12 ( 1 ) x 2 + w 13 ( 1 ) x 3 ) a 2 ( 2 ) = g ( w 20 ( 1 ) x 0 + w 21 ( 1 ) x 1 + w 22 ( 1 ) x 2 + w 23 ( 1 ) x 3 ) a 3 ( 2 ) = g ( w 30 ( 1 ) x 0 + w 31 ( 1 ) x 1 + w 32 ( 1 ) x 2 + w 33 ( 1 ) x 3 ) h ( x ) = a 1 ( 3 ) = g ( w 10 ( 2 ) a 0 ( 2 ) + w 11 ( 2 ) a 1 ( 2 ) + w 12 ( 2 ) a 2 ( 2 ) + w 13 ( 2 ) a 3 ( 2 ) ) \begin{aligned} a^{(2)}_1 = & g\bigg( w^{(1)}_{10} x_0 + w^{(1)}_{11} x_1 + w^{(1)}_{12} x_2 + w^{(1)}_{13} x_3 \bigg)\\ a^{(2)}_2 = & g\bigg( w^{(1)}_{20} x_0 + w^{(1)}_{21} x_1 + w^{(1)}_{22} x_2 + w^{(1)}_{23} x_3 \bigg)\\ a^{(2)}_3 = & g\bigg( w^{(1)}_{30} x_0 + w^{(1)}_{31} x_1 + w^{(1)}_{32} x_2 + w^{(1)}_{33} x_3 \bigg)\\ h(x) = a^{(3)}_1 = &g\bigg( w^{(2)}_{10}a^{(2)}_0 + w^{(2)}_{11}a^{(2)}_1 + w^{(2)}_{12}a^{(2)}_2 + w^{(2)}_{13}a^{(2)}_3 \bigg) \end{aligned} a1(2)=a2(2)=a3(2)=h(x)=a1(3)=g(w10(1)x0+w11(1)x1+w12(1)x2+w13(1)x3)g(w20(1)x0+w21(1)x1+w22(1)x2+w23(1)x3)g(w30(1)x0+w31(1)x1+w32(1)x2+w33(1)x3)g(w10(2)a0(2)+w11(2)a1(2)+w12(2)a2(2)+w13(2)a3(2))

  如果向量化一下,那就是:

x = [ x 0 x 1 x 2 x 3 ] ,          w ( 1 ) = [ w 10 ( 1 ) w 11 ( 1 ) w 12 ( 1 ) w 13 ( 1 ) w 20 ( 1 ) w 21 ( 1 ) w 22 ( 1 ) w 23 ( 1 ) w 30 ( 1 ) w 31 ( 1 ) w 32 ( 1 ) w 33 ( 1 ) ] x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}, \;\;\;\; w^{(1)} = \begin{bmatrix} w^{(1)}_{10} & w^{(1)}_{11} & w^{(1)}_{12} & w^{(1)}_{13} \\ w^{(1)}_{20} & w^{(1)}_{21} & w^{(1)}_{22} & w^{(1)}_{23} \\ w^{(1)}_{30} & w^{(1)}_{31} & w^{(1)}_{32} & w^{(1)}_{33} \end{bmatrix} x= x0x1x2x3 ,w(1)= w10(1)w20(1)w30(1)w11(1)w21(1)w31(1)w12(1)w22(1)w32(1)w13(1)w23(1)w33(1)

  然后有:

z ( 2 ) = w ( 1 ) x = [ z 1 ( 2 ) z 2 ( 2 ) z 3 ( 2 ) ] ,          a ( 2 ) = g ( z ( 2 ) ) = [ a 1 ( 2 ) a 2 ( 2 ) a 3 ( 2 ) ] z^{(2)} = w^{(1)}x = \begin{bmatrix} z^{(2)}_1 \\ z^{(2)}_2 \\ z^{(2)}_3 \end{bmatrix}, \;\;\;\;a^{(2)} = g(z^{(2)}) = \begin{bmatrix} a^{(2)}_1 \\ a^{(2)}_2 \\ a^{(2)}_3 \end{bmatrix} z(2)=w(1)x= z1(2)z2(2)z3(2) ,a(2)=g(z(2))= a1(2)a2(2)a3(2)

  下一层是:

a ( 2 ) = [ a 0 ( 2 ) a 1 ( 2 ) a 2 ( 2 ) a 3 ( 2 ) ] ,          w ( 2 ) = [ w 20 ( 2 ) w 21 ( 2 ) w 22 ( 2 ) w 23 ( 2 ) ] a^{(2)} = \begin{bmatrix} a^{(2)}_{0} \\ a^{(2)}_{1} \\ a^{(2)}_{2} \\ a^{(2)}_{3} \end{bmatrix}, \;\;\;\;w^{(2)} = \begin{bmatrix} w^{(2)}_{20} & w^{(2)}_{21} & w^{(2)}_{22} & w^{(2)}_{23} \end{bmatrix} a(2)= a0(2)a1(2)a2(2)a3(2) ,w(2)=[w20(2)w21(2)w22(2)w23(2)]

z ( 3 ) = w ( 2 ) a ( 2 ) = [ z 1 ( 3 ) ] ,          a ( 3 ) = g ( z ( 3 ) ) = [ a 1 ( 3 ) ] z^{(3)} = w^{(2)}a^{(2)} = \begin{bmatrix} z^{(3)}_1 \end{bmatrix}, \;\;\;\; a^{(3)} = g(z^{(3)}) = \begin{bmatrix} a^{(3)}_1 \end{bmatrix} z(3)=w(2)a(2)=[z1(3)],a(3)=g(z(3))=[a1(3)]

  以上就是神经网络的计算方式,其实还是很好理解也很好实现的qwq

后向传播 B a c k    P r o p a g a t i o n Back \; Propagation BackPropagation

  现在就是考虑如何计算出 w ( i ) w^{(i)} w(i) 这么多矩阵了。( n o t a t i o n notation notation L L L 表示神经网络的层数, S l S_l Sl 表示 l l l 层的节点数, k k k 表示输出层的节点数)

  我们仍然考虑用类似 G D GD GD 的方法,于是我们考虑 min ⁡ w J ( w ) \min\limits_wJ(w) wminJ(w),其中:

J ( w ) = 1 m ∑ i = 1 m ∑ k = 1 S L 1 2 [ ( h ( x i ) ) k − y i k ] 2 J(w) = \frac 1m \sum_{i = 1}^m\sum_{k = 1}^{S_L}\frac 12 \bigg[ (h(x_i))_k - y_{ik} \bigg]^2 J(w)=m1i=1mk=1SL21[(h(xi))kyik]2

  然后我们就是要求解 ∂ J ( w ) ∂ w i j ( l ) \frac{\partial J(w)}{\partial w^{(l)}_{ij}} wij(l)J(w)

  我们考虑将所有的训练数据分开求解,对于其中一个训练数据 ( x i , y i ) (x_i, y_i) (xi,yi) 来说:

J i = ∑ k = 1 S L 1 2 [ ( h ( x i ) ) k − y i k ] 2 J_i = \sum_{k = 1}^{S_L}\frac 12 \bigg[ (h(x_i))_k - y_{ik} \bigg]^2 Ji=k=1SL21[(h(xi))kyik]2

  我们定义 δ i ( l ) \delta^{(l)}_i δi(l) 表示 a i ( l ) a^{(l)}_i ai(l) 对真实值的差值,也就是:

δ j ( l ) = ∂ J i ∂ z j ( l ) \delta^{(l)}_j = \frac{\partial J_i}{\partial z^{(l)}_j} δj(l)=zj(l)Ji

  而对于最后一层来说:

δ j ( L ) = ∂ J i ∂ z j ( L ) = ∂ J i ∂ a j ( L ) ⋅ ∂ a j ( L ) ∂ z j ( L ) = ∂ ∑ k = 1 S L 1 2 [ ( h ( x i ) ) k − y i k ] 2 ∂ a j ( L ) ⋅ ∂ g ( z j ( L ) ) ∂ z j ( L ) = ∂ ∑ k = 1 S L 1 2 [ a k ( L ) − y i k ] 2 ∂ a j ( L ) ⋅ g ′ ( z j ( L ) ) = ( a j ( L ) − y i k ) ⋅ g ′ ( z j ( L ) ) \begin{aligned} \delta^{(L)}_j = \frac{\partial J_i}{\partial z^{(L)}_j} = \frac{\partial J_i}{\partial a^{(L)}_j} \cdot \frac{\partial a^{(L)}_j}{\partial z^{(L)}_j} = &\frac{\partial \sum\limits_{k = 1}^{S_L}\frac 12 [(h(x_i))_k - y_{ik}]^2}{\partial a^{(L)}_j} \cdot \frac{\partial g(z^{(L)}_j)}{\partial z^{(L)}_j} \\ = & \frac{\partial \sum\limits_{k = 1}^{S_L}\frac 12 [a^{(L)}_k - y_{ik}]^2}{\partial a^{(L)}_j} \cdot g'(z^{(L)}_j) = (a^{(L)}_j - y_{ik}) \cdot g'(z^{(L)}_j) \end{aligned} δj(L)=zj(L)Ji=aj(L)Jizj(L)aj(L)==aj(L)k=1SL21[(h(xi))kyik]2zj(L)g(zj(L))aj(L)k=1SL21[ak(L)yik]2g(zj(L))=(aj(L)yik)g(zj(L))

  而我们要算的是:

∂ J i ∂ w j k ( L − 1 ) = ∂ J i ∂ a j ( L ) ⋅ ∂ a j ( L ) ∂ z j ( L ) ⋅ ∂ z j ( L ) ∂ w j k ( L − 1 ) = δ j ( L ) ⋅ ∂ z j ( L ) ∂ w j k ( L − 1 ) \begin{aligned} \frac{\partial J_i}{\partial w^{(L-1)}_{jk}} = \frac{\partial J_i}{\partial a^{(L)}_j} \cdot \frac{\partial a^{(L)}_j}{\partial z^{(L)}_j} \cdot \frac{\partial z^{(L)}_j}{\partial w^{(L-1)}_{jk}} = \delta^{(L)}_j \cdot \frac{\partial z^{(L)}_j}{\partial w^{(L-1)}_{jk}} \end{aligned} wjk(L1)Ji=aj(L)Jizj(L)aj(L)wjk(L1)zj(L)=δj(L)wjk(L1)zj(L)

  所以我们只需要计算 ∂ z j ( L ) ∂ w j k ( L − 1 ) \frac{\partial z^{(L)}_j}{\partial w^{(L-1)}_{jk}} wjk(L1)zj(L) 就可以了

  我们又知道:

z j ( L ) = ∑ i = 1 S L − 1 w j i ( L − 1 ) a i ( L − 1 ) z^{(L)}_j = \sum_{i = 1}^{S_{L - 1}}w^{(L - 1)}_{ji}a^{(L-1)}_i zj(L)=i=1SL1wji(L1)ai(L1)

  所以:

∂ z j ( L ) ∂ w j k ( L − 1 ) = ∑ i = 1 S L − 1 ∂ w j i ( L − 1 ) a i ( L − 1 ) ∂ w j k ( L − 1 ) = a k ( L − 1 ) \frac{\partial z^{(L)}_j}{\partial w^{(L-1)}_{jk}} = \frac{\sum\limits_{i = 1}^{S_{L - 1}}\partial w^{(L-1)}_{ji}a^{(L-1)}_i }{\partial w^{(L-1)}_{jk}} = a^{(L-1)}_k wjk(L1)zj(L)=wjk(L1)i=1SL1wji(L1)ai(L1)=ak(L1)

  于是:

∂ J i ∂ w j k ( L − 1 ) = δ j ( L ) ⋅ a k ( L − 1 ) \frac{\partial J_i}{\partial w^{(L-1)}_{jk}} = \delta^{(L)}_j \cdot a^{(L-1)}_k wjk(L1)Ji=δj(L)ak(L1)

  现在我们有了最后一层,我们考虑能不能往前推回去,这里我们以一个简单的例子来更直观的计算(这里我画图时把 w w w 写成 φ \varphi φ 了qwq):

在这里插入图片描述

  我们假设我们要计算 J J J w 11 ( 3 ) w^{(3)}_{11} w11(3) 求偏导:

∂ J i ∂ w 11 ( 3 ) = ∂ ( J i 1 + J i 2 ) ∂ w 11 ( 3 ) = ∂ J i 1 ∂ w 11 ( 3 ) + ∂ J i 2 ∂ w 11 ( 3 ) \frac{\partial J_i}{\partial w^{(3)}_{11}} = \frac{\partial (J_{i1} + J_{i2})}{\partial w^{(3)}_{11}} = \frac{\partial J_{i1}}{\partial w^{(3)}_{11}} + \frac{\partial J_{i2}}{\partial w^{(3)}_{11}} w11(3)Ji=w11(3)(Ji1+Ji2)=w11(3)Ji1+w11(3)Ji2

  我们考虑分开求 ∂ J i 1 ∂ w 11 ( 3 ) \frac{\partial J_{i1}}{\partial w^{(3)}_{11}} w11(3)Ji1 ∂ J i 2 ∂ w 11 ( 3 ) \frac{\partial J_{i2}}{\partial w^{(3)}_{11}} w11(3)Ji2

  先算前一项,沿着神经网络做分布求导:

∂ J i 1 ∂ w 11 ( 3 ) = ∂ J i 1 ∂ a 1 ( 5 ) ⋅ ∂ a 1 ( 5 ) ∂ z 1 ( 5 ) ⋅ ∂ z 1 ( 5 ) ∂ a 1 ( 4 ) ⋅ ∂ a 1 ( 4 ) ∂ z 1 ( 4 ) ⋅ ∂ z 1 ( 4 ) w 11 ( 3 ) = δ 1 ( 5 ) ⋅ ∂ z 1 ( 5 ) ∂ a 1 ( 4 ) ⋅ ∂ a 1 ( 4 ) ∂ z 1 ( 4 ) ⋅ ∂ z 1 ( 4 ) w 11 ( 3 ) \begin{aligned} \frac{\partial J_{i1}}{\partial w^{(3)}_{11}} = & \frac{\partial J_{i1}}{\partial a^{(5)}_1} \cdot \frac{\partial a^{(5)}_1}{\partial z^{(5)}_1} \cdot \frac{\partial z^{(5)}_1}{\partial a^{(4)}_1} \cdot \frac{\partial a^{(4)}_1}{\partial z^{(4)}_1} \cdot \frac{\partial z^{(4)}_1}{w^{(3)}_{11}} \\ = & \delta^{(5)}_1 \cdot \frac{\partial z^{(5)}_1}{\partial a^{(4)}_1} \cdot \frac{\partial a^{(4)}_1}{\partial z^{(4)}_1} \cdot \frac{\partial z^{(4)}_1}{w^{(3)}_{11}} \end{aligned} w11(3)Ji1==a1(5)Ji1z1(5)a1(5)a1(4)z1(5)z1(4)a1(4)w11(3)z1(4)δ1(5)a1(4)z1(5)z1(4)a1(4)w11(3)z1(4)

  我们又有:

z 1 ( 5 ) = w 11 ( 4 ) a 1 ( 4 ) + w 12 ( 4 ) a 2 ( 4 ) → ∂ z 1 ( 5 ) ∂ a 1 ( 4 ) = w 11 ( 4 ) a 1 ( 4 ) = g ( z 1 ( 4 ) ) → ∂ a 1 ( 4 ) ∂ z 1 ( 4 ) = g ′ ( z 1 ( 4 ) ) z 1 ( 4 ) = w 11 ( 3 ) a 1 ( 3 ) + w 12 ( 3 ) a 2 ( 3 ) → ∂ z 1 ( 4 ) ∂ w 11 ( 3 ) = a 1 ( 3 ) \begin{aligned} z^{(5)}_1 = w^{(4)}_{11}a^{(4)}_1 + w^{(4)}_{12}a^{(4)}_2 \rightarrow & \frac{\partial z^{(5)}_1}{\partial a^{(4)}_1} = w^{(4)}_{11} \\ a^{(4)}_1 = g(z^{(4)}_1) \rightarrow & \frac{\partial a^{(4)}_1}{\partial z^{(4)}_1} = g'(z^{(4)}_1) \\ z^{(4)}_1 = w^{(3)}_{11}a^{(3)}_1 + w^{(3)}_{12}a^{(3)}_2 \rightarrow & \frac{\partial z^{(4)}_1}{\partial w^{(3)}_{11}} = a^{(3)}_1 \end{aligned} z1(5)=w11(4)a1(4)+w12(4)a2(4)a1(4)=g(z1(4))z1(4)=w11(3)a1(3)+w12(3)a2(3)a1(4)z1(5)=w11(4)z1(4)a1(4)=g(z1(4))w11(3)z1(4)=a1(3)

  所以:

∂ J i 1 ∂ w 11 ( 3 ) = δ 1 ( 5 ) ⋅ w 11 ( 4 ) ⋅ g ′ ( z 1 ( 4 ) ) ⋅ a 1 ( 3 ) \frac{\partial J_{i1}}{\partial w^{(3)}_{11}} = \delta^{(5)}_1 \cdot w^{(4)}_{11} \cdot g'(z^{(4)}_1) \cdot a^{(3)}_1 w11(3)Ji1=δ1(5)w11(4)g(z1(4))a1(3)

  同样的,我们也可以推出(这里因为和前面几乎一样所以过程就省略了 (绝对不是因为公式打起来太麻烦了qwq):

∂ J i 2 ∂ w 11 ( 3 ) = δ 2 ( 5 ) ⋅ w 21 ( 4 ) ⋅ g ′ ( z 1 ( 4 ) ) ⋅ a 1 ( 3 ) \frac{\partial J_{i2}}{\partial w^{(3)}_{11}} = \delta^{(5)}_2 \cdot w^{(4)}_{21} \cdot g'(z^{(4)}_1) \cdot a^{(3)}_1 w11(3)Ji2=δ2(5)w21(4)g(z1(4))a1(3)

  所以把这俩玩意儿加起来就能得到:

∂ J i ∂ w 11 ( 3 ) = δ 1 ( 5 ) ⋅ w 11 ( 4 ) ⋅ g ′ ( z 1 ( 4 ) ) ⋅ a 1 ( 3 ) + δ 2 ( 5 ) ⋅ w 21 ( 4 ) ⋅ g ′ ( z 1 ( 4 ) ) ⋅ a 1 ( 3 ) = ( δ 1 ( 5 ) ⋅ w 11 ( 4 ) + δ 2 ( 5 ) ⋅ w 21 ( 4 ) ) ⋅ g ′ ( z 1 ( 4 ) ) ⋅ a 1 ( 3 ) \begin{aligned} \frac{\partial J_i}{\partial w^{(3)}_{11}} = & \delta^{(5)}_1 \cdot w^{(4)}_{11} \cdot g'(z^{(4)}_1) \cdot a^{(3)}_1 + \delta^{(5)}_2 \cdot w^{(4)}_{21} \cdot g'(z^{(4)}_1) \cdot a^{(3)}_1\\ = & (\delta^{(5)}_1 \cdot w^{(4)}_{11} + \delta^{(5)}_2 \cdot w^{(4)}_{21})\cdot g'(z^{(4)}_1) \cdot a^{(3)}_1 \end{aligned} w11(3)Ji==δ1(5)w11(4)g(z1(4))a1(3)+δ2(5)w21(4)g(z1(4))a1(3)(δ1(5)w11(4)+δ2(5)w21(4))g(z1(4))a1(3)

  然后我们令:

δ 1 ( 4 ) = ( δ 1 ( 5 ) ⋅ w 11 ( 4 ) + δ 2 ( 5 ) ⋅ w 21 ( 4 ) ) ⋅ g ′ ( z 1 ( 4 ) ) \delta^{(4)}_1 = (\delta^{(5)}_1 \cdot w^{(4)}_{11} + \delta^{(5)}_2 \cdot w^{(4)}_{21}) \cdot g'(z^{(4)}_1) δ1(4)=(δ1(5)w11(4)+δ2(5)w21(4))g(z1(4))

  于是我们就有:

∂ J i ∂ w 11 ( 3 ) = δ 1 ( 4 ) ⋅ a 1 ( 3 ) \frac{\partial J_i}{\partial w^{(3)}_{11}} = \delta^{(4)}_1 \cdot a^{(3)}_1 w11(3)Ji=δ1(4)a1(3)

  我们发现,这个式子跟我们上面的

∂ J i ∂ w j k ( L − 1 ) = δ j ( L ) ⋅ a k ( L − 1 ) \frac{\partial J_i}{\partial w^{(L-1)}_{jk}} = \delta^{(L)}_j \cdot a^{(L-1)}_k wjk(L1)Ji=δj(L)ak(L1)

  这个的结构完全一致。

  所以我们得到了一个递推式:

δ 1 ( 4 ) = ( δ 1 ( 5 ) ⋅ w 11 ( 4 ) + δ 2 ( 5 ) ⋅ w 21 ( 4 ) ) ⋅ g ′ ( z 1 ( 4 ) ) \delta^{(4)}_1 = (\delta^{(5)}_1 \cdot w^{(4)}_{11} + \delta^{(5)}_2 \cdot w^{(4)}_{21}) \cdot g'(z^{(4)}_1) δ1(4)=(δ1(5)w11(4)+δ2(5)w21(4))g(z1(4))

  同样的,我们也能得到:

δ 2 ( 4 ) = ( δ 1 ( 5 ) ⋅ w 12 ( 4 ) + δ 2 ( 5 ) ⋅ w 22 ( 4 ) ) ⋅ g ′ ( z 2 ( 4 ) ) \delta^{(4)}_2 = (\delta^{(5)}_1 \cdot w^{(4)}_{12} + \delta^{(5)}_2 \cdot w^{(4)}_{22}) \cdot g'(z^{(4)}_2) δ2(4)=(δ1(5)w12(4)+δ2(5)w22(4))g(z2(4))

  也可以写成向量的形式:

[ δ 1 ( 4 ) δ 2 ( 4 ) ] = ( [ w 11 ( 4 ) w 12 ( 4 ) w 21 ( 4 ) w 22 ( 4 ) ] [ δ 1 ( 5 ) δ 2 ( 5 ) ] ) ⋅ ∗ [ g ′ ( z 1 ( 4 ) ) g ′ ( z 2 ( 4 ) ) ] \begin{bmatrix} \delta^{(4)}_1 \\ \delta^{(4)}_2 \end{bmatrix} = \left(\begin{bmatrix} w^{(4)}_{11} & w^{(4)}_{12} \\ w^{(4)}_{21} & w^{(4)}_{22} \end{bmatrix} \begin{bmatrix} \delta^{(5)}_1 \\ \delta^{(5)}_2 \end{bmatrix}\right) \cdot* \begin{bmatrix} g'(z^{(4)}_1) \\ g'(z^{(4)}_2) \end{bmatrix} [δ1(4)δ2(4)]=([w11(4)w21(4)w12(4)w22(4)][δ1(5)δ2(5)])[g(z1(4))g(z2(4))]

  也就是:

δ ( 4 ) = [ ( w ( 4 ) ) T δ ( 5 ) ] ⋅ ∗ g ′ ( z ( 4 ) ) \delta^{(4)} = \bigg[(w^{(4)})^T\delta^{(5)}\bigg] \cdot* g'(z^{(4)}) δ(4)=[(w(4))Tδ(5)]g(z(4))

  同样的,我们也能将这个式子推广到其他层:

δ ( l ) = [ ( w ( l ) ) T δ ( l + 1 ) ] ⋅ ∗ g ′ ( z ( l ) ) \delta^{(l)} = \bigg[ (w^{(l)})^T\delta^{(l+1)} \bigg] \cdot* g'(z^{(l)}) δ(l)=[(w(l))Tδ(l+1)]g(z(l))

  这个式子就是我们 b a c k    p r o p a g a t i o n back \; propagation backpropagation 的关键了。

  然后我们对于每个训练数据 i i i 都跑一遍 B P BP BP 计算出 ∂ J i ∂ w j k ( L − 1 ) \frac{\partial J_i}{\partial w^{(L-1)}_{jk}} wjk(L1)Ji,然后令 Δ j k ( l ) \Delta^{(l)}_{jk} Δjk(l) 存储 ∂ J i ∂ w j k ( L − 1 ) \frac{\partial J_i}{\partial w^{(L-1)}_{jk}} wjk(L1)Ji 的和。最后跑完 m m m 个训练数据后令 D j k ( l ) = 1 m Δ j k ( l ) D^{(l)}_{jk} = \frac 1m\Delta^{(l)}_{jk} Djk(l)=m1Δjk(l),我们就得到了:

∂ ∂ w j k ( l ) J ( w ) = D j k ( l ) \frac{\partial}{\partial w^{(l)}_{jk}}J(w) = D^{(l)}_{jk} wjk(l)J(w)=Djk(l)

  然后再进行 G D GD GD 就可以了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2130087.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SprinBoot+Vue财务管理系统的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质…

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强…

百度地图SDK Android版开发 11 覆盖物示例 4 线

百度地图SDK Android版开发 11 覆盖物示例 4 线 前言界面布局MapPolyline类常量成员变量初始值创建覆盖物移除覆盖物设置属性加载地图和释放地图 MapPolylineActivity类控件响应事件 运行效果图 前言 文本通过创建多个不同线宽的折线和大地曲线,介绍Polyline的使用…

numpy中的比较运算

目录 比较运算符 比较运算符 有两种情况会普遍使用比较运算符,一个是从数组中查询满足条件的元素,另一个是根据判断的结果执行不同的操作。 示例入下: import numpy as np arr7 np.array([[1,2,10],[10,8,3],[7,6,5]]) arr8 np.array([[2,…

整流器制造5G智能工厂物联数字孪生平台,推进制造业数字化转型

整流器制造行业作为制造业的重要组成部分,也在积极探索数字化转型的新路径。整流器,作为电力电子领域的关键元件,广泛应用于通信、工业控制、新能源等多个领域,其制造过程的智能化升级不仅关乎产品性能的提升,更是推动…

opencv使用videocapture打开视频时,依赖opencv_ffmpeg***.dll,默认必须放到执行目录,自定义目录需要重新编译opencv库

1. 找到modules下opencv_highgui模块的cap_ffmpeg.cpp 2. 找到加载opencv_ffmpeg的接口, 修改接口内opencv_ffmpeg的路径即可.

YOLOv10优改系列一:YOLOv10融合C2f_Ghost网络,让YoloV10实现性能的均衡

💥 💥💥 💥💥 💥💥 💥💥神经网络专栏改进完整目录:点击 💗 只需订阅一个专栏即可享用所有网络改进内容,每周定时更新 文章内容&#x…

基于JavaWeb开发的javaSpringboot+mybatis+layui的装修验收管理系统设计和实现

基于JavaWeb开发的javaSpringbootmybatislayui的装修验收管理系统设计和实现 🍅 作者主页 网顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系…

【第31章】Spring Cloud之Sentinel控制台推送规则到Nacos

文章目录 前言一、下载源码1. 下载源码 二、规则配置1. Nacos适配1.1 使用数据源1.2 复制官方案例1.3 动态规则配置中心 2. 前端路由配置3. 提示4. 编译和启动 三、测试1. 修改前2. 修改后 总结 前言 前面我们已经完成了通过nacos存储提供者流控配置文件,下面我们来…

腾讯云升级多个云存储解决方案 以智能化存储助力企业增长

9月6日,在腾讯数字生态大会腾讯云储存专场上,腾讯云升级多个存储解决方案:Data Platform 数据平台解决方案重磅发布,数据加速器 GooseFS、数据处理平台数据万象、日志服务 CLS、高性能并行文件存储 CFS Turbo 等多产品全新升级&am…

Nuxt Kit 的使用指南:模块创建与管理

title: Nuxt Kit 的使用指南:模块创建与管理 date: 2024/9/11 updated: 2024/9/11 author: cmdragon excerpt: 摘要:本文是关于Nuxt Kit的使用指南,重点介绍了如何使用defineNuxtModule创建自定义模块及installModule函数以编程方式安装模块,以增强Nuxt 3应用的功能性、…

JD18年秋招笔试疯狂数列python解答

问题如下: 链接:疯狂序列_京东笔试题_牛客网 [编程题]疯狂序列 热度指数:149 时间限制:C/C 1秒,其他语言2秒 空间限制:C/C 32M,其他语言64M 东东从京京那里了解到有一个无限长的数字序列: 1…

空间物联网中的大规模接入:挑战、机遇和未来方向

这篇论文的标题是《Massive Access in Space-based Internet of Things: Challenges, Opportunities, and Future Directions》,作者包括Jian Jiao, Shaohua Wu, Rongxing Lu, 和 Qinyu Zhang。文章发表在2021年10月的IEEE Wireless Communications上。论文主要探讨…

计算机毕业设计 半成品配菜平台的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

数据结构算法——排序算法

1.排序 1.选择排序 不稳定&#xff0c;一般不用&#xff0c;基本排序 思路&#xff1a;过滤数组&#xff0c;找到最小数&#xff0c;放在前面。 不稳&#xff1a;导致原本在前的数据移动到后面。 int arr[];for(i0;i<arr.length-1;i){int smallesti; for(ji1;j<leng…

计算机毕业设计 网上体育商城系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

加密

一、加密 加密运算需要两个输入&#xff1a;密钥和明文 解密运算也需要两个输入&#xff1a;密钥和密文 密文通常看起来都是晦涩难懂、毫无逻辑的&#xff0c;所以我们一般会通过传输或者存储密文来保护私密数据&#xff0c;当然&#xff0c;这建立在一个基础上&#xff0c;…

局域网windows下使用Git

windows下如何使用局域网进行git部署 准备工作第一步 &#xff0c;ip设置设置远程电脑的ip设置&#xff0c;如果不会设置请点击[这里](https://blog.csdn.net/Black_Friend/article/details/142170705?spm1001.2014.3001.5501)设置本地电脑的ip&#xff1a;验证 第二步&#x…

腾讯云使用

注&#xff1a;本文的所有演示的代码都基于尚硅谷的尚乐代驾项目 对象存储COS 一种云存储器 官方文档&#xff1a; 对象存储 快速入门-SDK 文档-文档中心-腾讯云 (tencent.com) 一 上传文件 1 初始化客户端 官方示例&#xff1a; // 1 传入获取到的临时密钥 (tmpSecret…

一文教你弄懂网络协议栈以及报文格式

文章目录 OSI七层网络协议栈示意图1. 应用层&#xff08;Application Layer&#xff09;2. 表示层&#xff08;Presentation Layer&#xff09;3. 会话层&#xff08;Session Layer&#xff09;4. 传输层&#xff08;Transport Layer&#xff09;5. 网络层&#xff08;Network …