[综述笔记]Federated learning for medical image analysis: A survey

news2024/11/25 6:45:25

论文网址:Federated learning for medical image analysis: A survey - ScienceDirect

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.2.1. Related surveys

2.2.2. Searching and analysis process

2.3. Background

2.3.1. Motivation

2.3.2. Problem formulation of federated learning

2.3.3. Typical process of federated learning

2.3.4. Types of federated learning

2.4. Federated learning for medical image analysis

2.4.1. Methods overview: A system perspective

2.4.2. Client-end learning

2.4.3. Sever-end learning

2.4.4. Client–server communication

2.5. Software platforms and tools

2.6. Medical image datasets for federated learning

2.6.1. Medical image data usage overview

2.6.2. Brain images

2.6.3. Chest/lung/heart images

2.6.4. Skin images

2.6.5. Others

2.7. Experiment

2.7.1. Experimental setup

2.7.2. Result and analysis

2.8. Discussion

2.8.1. Challenges of federated learning for medical image analysis

2.8.2. Future research directions

2.9. Conclusion

4. Reference


1. 省流版

1.1. 心得

(1)不太了解联邦学习在医学影像应用的可以读,不然不算是非常有深度的文章。可以当看个小科普。熟悉联邦学习的估计在这里面找不到新的idea和文章

2. 论文逐段精读

2.1. Abstract

        ①Conundrum in machine learning (ML): scarcity of samples

        ②Solving method: federated learning (FL)

        ③3 aspects of FL: client end, server end, and communication techniques

2.2. Introduction

        ①Privacy which limits the sharing between sites: Health Insurance Portability and Accountability Act (HIPAA) and General Data Protection Regulation (GDPR)

        ②FL in medical image field:

intractable  adj. 棘手的;很难对付(或处理)的

2.2.1. Related surveys

        ①Papers covered: from 1 January 2017 to 31 October 2023

        ②Chapters/content included: Software Platforms, Experimental Study, Future Direction and New Arisen Problems, Different Perspective and Organization

2.2.2. Searching and analysis process

        ①Introducing how the selected papers and the chapters arrangement of this work

        ②Collected/contained papers:

2.3. Background

2.3.1. Motivation

(1)Privacy protection in medical image analysis

        ①Violating privacy protection laws may result in high fines for hospitals and institutions

(2)Challenges of medical image analysis

        ①Limited sites/data

        ②Class imbalance

        ③Population statistics and distribution differences

skew  v.歪斜;偏离;歪曲;曲解;影响…的准确性;使不公允  n.斜交;扭曲;斜砌石;歪轮  adj.弯曲的;歪的;曲解的;误用的

2.3.2. Problem formulation of federated learning

        ①There are N sites with there own datasets \left \{D_{1},D_2, ... , D_N \right \}

        ②Defining the sharing model as M^* and the local model as M

2.3.3. Typical process of federated learning

(1)Client Selection and Initialization: including specific clients

(2)Local Training: advanced local training

(3)Model Upload: only update/share weights to sever

(4)Aggregation: different strategy

(5)Broadcast: synchronous update

(6)Iteration and Convergence: synchronous update

(7)Deployment: compatibility with existing hospital systems, integration challenges, and user adoption hurdles

2.3.4. Types of federated learning

(1)Horizontal federated learning

        ①Equals to homogeneous federated learning

        ②Different medical institutions hold medical imaging data of different patients

(2)Vertical federated learning

        ①Namely heterogeneous federated learning

        ②Different institutions have different types of data for the same group of patients

2.4. Federated learning for medical image analysis

2.4.1. Methods overview: A system perspective

        ①Overview:

2.4.2. Client-end learning

(1)Client end: Domain shift among clients

        ①Distribution in different sites:

        ②Domain-specific learning: fine-tune global model by data in clients

        ③Domain adaptation: align distribution differences

        ④Image harmonization: image-to-image translation model

(2)Client end: Limited data and labels

        ①Constract learning: distinguish between similar and dissimilar data

        ②Multi-task learning: data augmentation

        ③Weakly-supervised learning

        ④Knowledge distillation: utilizing small student model to represent the bigger teacher model

        ⑤Data synthesis: generative model

(3)Client end: Heterogeneous environments (computation resource & data scale)

        ①Each sites needs different epoch to train cuz their scale of samples and the device are different:

2.4.3. Sever-end learning

(1)Sever end: Weight aggregation

(2)Sever end: Domain shift among clients

(3)Sever end: Client corruption/anomaly detection

2.4.4. Client–server communication

(1)Data leakage and attack

        ①Partial Weights Sharing: only employ feature extraction in local model ()

        ②Differential Privacy: noise added

        ③Attack and Defense: generate fake images

(2)Communication efficiency

        ①Dynamic weight aggregation

2.5. Software platforms and tools

(1)PySyft

(2)OpenFL

(3)PriMIA

(4)Fed-BioMed

2.6. Medical image datasets for federated learning

2.6.1. Medical image data usage overview

        ①Using different site directly

        ②Divided one dataset to several sub dataset

2.6.2. Brain images

(1)ADNI

(2)ABIDE

(3)BraTS

(4)RSNA brain CT

(5)UK Biobank

(6)IXI

2.6.3. Chest/lung/heart images

(1)CheXpert

(2)ChestX-ray

(3)COVID-19 Chest X-ray

(4)COVIDx

(5)ACDC

(6)M&M

2.6.4. Skin images

(1)HAM10000

(2)ISIC

2.6.5. Others

(1)Eye: Kaggle Diabetic Retinopathy (Retina)

(2)Abdomen: PROMISE12

(3)Histology: TCGA

(4)Knee: fastMRI

(5)MedMNIST

2.7. Experiment

        ①Dataset: T1 weight image of ADNI

ADNI dataset containedTotal samplesADNC
ADNI 1428177229
ADNI 2360159201

        ②Atkas: AAL 90

        ③Feature: mean gray matter volumes

        ④Dataset dividing: 80% for training and 20% for testing

        ⑤Cross validation: 5 fold

 

2.7.1. Experimental setup

        ①Compared models

Traditional machine learningCrosstrain data on one client, test on other client
Singletrain and test on each client respectively
Mixtrain data from all the client, and then test
Popular FL methodsFedAVGaggregate weights
FedSGDaggregate gradients
FedProxEvery client trains its own model with an additional proximal term (the coefficient μ is set to 0.1)

        ②Figure:

2.7.2. Result and analysis

        ①Classification result:

2.8. Discussion

2.8.1. Challenges of federated learning for medical image analysis

(1)Data heterogeneity among clients: different scanner/scanning machine, patients distribution

(2)Privacy leakage/poisoning attacks

(3)Technological limitations: computing cost

(4)Long-term viability of FL-based medical image analysis

2.8.2. Future research directions

(1)Future research directions

(2)Multi-modality fusion for federated learning

(3)Model generalizability for unseen clients

(4)Weakly-supervised learning for federated learning

(5)Federated learning security: Attack and defense

(6)Blockchain and decentralization of federated learning

(7)Federated learning for medical video analysis

(8)Large-scale medical image benchmark for federated learning

(9)Model interpretability

(10)Real-world implementation and practical issues

2.9. Conclusion

        Conclusion of this work

4. Reference

Guan, H. et al. (2024) 'Federated learning for medical image analysis: A survey', Pattern Recognition, 151. doi: Redirecting

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2127392.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ Primer Plus(速记版)-基本语言

序章 快速入门 初窥输入/输出 C 并没有直接定义进行输入或输出(I/O)的任何语句,这种功能是由标准库提供的。 本书的大多数例子都使用了处理格式化输入和输出的 iostream 库。 iostream 库的基础是两种命名为 istream 和 ostream 的类型,分别表示输入流和…

卷积神经网络-经典分类网络结构(LetNet-5,AlexNet)

目录 一:LeNet-5解析 1.网络结构 输入层: 1.conv1: 2.pool1层: 3.conv2: 4.pool2: 5.fc3,fc4: 6.output层: 2.参数形状 二:AlexNet 1层: 2层&am…

招生管理|基于Java+vue的招生管理系统(源码+数据库+文档)

招生管理|学生管理系统|高校招生管理 目录 基于Javavue的招生管理系统 一、前言 二、系统设计 三、系统功能设计 系统功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍:✌️大厂码农|…

什么是OAuth 2.0?OAuth 2.0的工作流程是什么?与OAuth 1.0有哪些区别?

在浏览网页时,你肯定会遇到允许你使用社交媒体账户登录的网站。此功能一般是使用流行的OAuth 2.0框架构建的。OAuth 2.0是对OAuth 1.0的彻底重写,OAuth 2.0与OAuth 1.0或1.1不向后兼容。 1. OAuth产生背景 为了更好的理解OAuth,我们假设有如…

CAN总线-STM32上CAN外设

1.STM32 CAN外设简介 2.CAN网拓扑结构 3.CAN收发器电路 4.CAN框图 5.CAN基本结构 6.发送过程 7.接收过程 8.发送和接收配置位 9.标识过滤器(重点) 这里的FBMX模式设置的列表模式:你在列表中输入你想要的报文ID,不在你列表中的ID屏…

css grid布局属性详解

Grid布局 前言一、认识Grid1.1容器和项目1.2行和列1.3单元格和网格线 二、容器属性2.1.grid-template-columns与grid-template-rows属性2.1.1 直接使用长度单位比如px2.1.2 使用百分比 %2.1.3 使用repeat函数2.1.4 按比例划分 fr 关键字2.1.5 自动填充 auto 关键字2.1.6 最大值…

c4d的重命名工具(支持模型和材质) 及 python窗口定义

不是我牛逼,是豆包牛逼! 一个简化版的窗口 import c4d from c4d import guiclass MyDialog(gui.GeDialog):def __init__(self):super().__init__()self.SetTitle("My Dialog")def CreateLayout(self):# 设置对话框布局return Truemy_dialog …

C语言补习课番外篇——采样sin(x)

需求:让stm32的DAC输出正弦波形 分析:DAC的原理这里不作过多介绍。在[0.2π]的定义域内对sin(x)的值域进行采样,采样次数为256次;采样结果需要等比例缩放到0~4095的无符号数范围内,并且输出到一个SinFile.txt文本文档…

无敌C++大王养成篇一

1.命名空间 namespace c语⾔项⽬类似下⾯程序这样的命名冲突是普遍存在的问题&#xff0c;C引⼊namespace就是为了更好的解决 这样的问题 #include<stdio.h> //#include<stdlib.h>int rand 10;int main() {printf("%d\n",rand); }//运行时编译没有…

Grafana 可视化配置

Grafana 是什么 Grafana 是一个开源的可视化和监控工具&#xff0c;广泛用于查看和分析来自各种数据源的时间序列数据。它提供了一个灵活的仪表盘&#xff08;dashboard&#xff09;界面&#xff0c;用户可以通过它将数据源中的指标进行图表化展示和监控&#xff0c;帮助分析趋…

语音转文字工具全解析

无论是学生群体记录课堂笔记&#xff0c;职场人士整理会议纪要&#xff0c;还是自媒体创作者捕捉灵感火花&#xff0c;录音转文字软件都以其独特的便利性和高效性赢得了广泛的好评。今天&#xff0c;就让我们一起探索那些深受大家喜爱的录音转文字工具吧。 1.365在线转文字 链…

C++ | Leetcode C++题解之第397题整数替换

题目&#xff1a; 题解&#xff1a; class Solution { public:int integerReplacement(int n) {int ans 0;while (n ! 1) {if (n % 2 0) {ans;n / 2;}else if (n % 4 1) {ans 2;n / 2;}else {if (n 3) {ans 2;n 1;}else {ans 2;n n / 2 1;}}}return ans;} };

Window 本地启动Nacos

前言 本文帮助大家快速windows环境本地启动naco&#xff08;以版本2.2.3为例&#xff09; 进一步深入学习nacos推荐我的另外一篇文章&#xff1a; springCloud组件专题&#xff08;一&#xff09; --- Nacos_springcloud中的nacos如何使用-CSDN博客 ** 在本地启动nacos之前&…

C:字符函数与字符串函数-学习笔记

目录 1、字符分类函数 2、字符转换函数 3、字符串函数 4、strlen 函数的使用与模拟实现 4.1 strlen函数的使用 4.2 strlen函数的模拟实现 1、字符分类函数 C语言中有一系列的函数是专门做字符分类的&#xff0c;也就是一个字符是属于什么类型的字符的。 这些函数的使用都…

Vue(10)——自定义指令

自定义指令 自定义指令&#xff1a;可以封装一些dom操作&#xff0c;扩展额外功能。 全局注册-语法&#xff1a; Vue.directive(指令名,{ "inserted"(el){ inserted指指令所绑定的元素被添加到页面时自动调用 //可以对el标签扩展额外功能 el.focus() } }) 局部…

基于python+django+vue+MySQL的酒店推荐系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】pythondjangovueMySQL的酒店推…

NLP中文本生成任务

文本生成任务 1.生成式任务2.自回归模型实现3.Encoder-Decoder结构3.1Attention机制出现3.2Attention思想3.3soft - Attention3.4hard - Attention3.5Teacher Forcing3.6详解Mask Attention3.6.1通过Mask控制训练方式 4.生成式任务评价指标5.生成式任务常见问题5.1采样策略5.2指…

深入解析Java内存模型:从堆到栈的全面剖析

在Java程序运行的背后&#xff0c;JVM&#xff08;Java Virtual Machine&#xff0c;Java虚拟机&#xff09;负责管理和分配内存。理解Java的内存模型&#xff08;Java Memory Model, JMM&#xff09;是编写高效、稳定程序的关键&#xff0c;尤其在并发编程中&#xff0c;内存管…

rose 聊开源—2 如何快速上手一个开源项目

在前面的一篇开源项目系列中&#xff0c;主要介绍了目前开源项目蓬勃发展的态势&#xff0c;并且拥有一个开源项目&#xff0c;对我们个人履历、职业发展等都有非常多的好处。 这一次就来跟大家分享一下&#xff0c;面对一个开源项目&#xff0c;我们应该如何上手&#xff0c;快…

【Android笔记】Android Studio打包 提示Invalid keystore format

前言 Android项目通过Android Studio生产签名文件进行打包。提示 com.android.ide.common.signing.KeytoolException: Failed to read key hocsdn from store "/Users/ho/TestProject/app/ho_developer.jks": Invalid keystore format 不合法的签名文件格式&#…