近几天在研究大模型LLM数数问题时,使用合成数据集来训练LLM“统计字符串(100个单词以内)中字母的个数”的能力,基于Word进行分词。原始的合成代码在生成随机字符串时,采用如下代码:
# self.words为常见英文单词数组,长度为3432
if random.random() < 0.1:
ss = random.choices(self.words, k=random.randint(1, 9))
else:
ss = random.choices(self.words, k=random.randint(1, 99))
合成样本示例如下:
how many letters are there in the following string: "spread high"? 10
how many letters are there in the following string: "european contradictory"? 21
how many letters are there in the following string: "lock over constitution smart boil superior patient teenager graduation drop speaker pronounce contribution boring step carpet realize format surprise disappoint promote track thick rank affect nurse preparation armchair data warn pint construction tale organization tank wear understand vast tremble"? 261
使用单卡训练12个小时左右,测试准确率约为99.937%。
这个准确率看上去很高的,但在人工测试过程中发现,模型对一些简单的case都会预测错误。例如:
how many letters are there in the following string: "a a"? 4, 2(expected)
how many letters are there in the following string: "be be be be"? 0, 8(expected)
how many letters are there in the following string: "dog dog a"? 8, 7(expected)
how many letters are there in the following string: "mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark mark"? 21292220, 396(expected)
how many letters are there in the following string: "world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world world"? 32, 320(expected)
how many letters are there in the following string: "i am fine"? 9, 7(expected)
从直觉上看,出错的case应该是更容易预测的。对此我提出如下猜测:如果测试样本的数据分布跟训练样本的数据分布差异较大,就会导致测试准确率降低。主要表现在: 1、长度为1的单词只有2个,占比为2/3432,但在实际测试中,"a"和"I"是高频单词 2、通过有放回地从词汇表中随机选取k个单词,难以出现类似"mark mark mark mark mark mark mark mark mark"这样的字符串
基于以上猜测,我修改了合成样本的代码:
# 提升短单词在单词表中的比例
self.short_words = []
for w in self.words:
if len(w) == 1:
self.short_words += [w] * 50
elif len(w) == 2:
self.short_words += [w] * 10
elif len(w) == 3:
self.short_words += [w] * 2
self.words_new = self.words + self.short_words
# 提升同一个单词在字符串中多次出现的概率
if random.random() < 0.05:
words = random.choices(self.words_new, k=random.randint(1, 5))
else:
words = self.words_new
if random.random() < 0.1:
ss = random.choices(words, k=random.randint(1, 9))
else:
ss = random.choices(words, k=random.randint(1, 99))
重新训练模型后再进行测试,上述错误的case就全部预测正确了。
总结:在合成训练样本时,应考虑实际使用场景的数据分布。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。