目录
准备工作
整理数据集
将验证集从原始的训练集中拆分出来
整理测试集
使用函数
图像增广
读取数据集
定义模型
定义训练函数
训练和验证数据集
对测试集进行分类并提交结果
准备工作
首先导入竞赛需要的包和模块
import collections
import math
import os
import shutil # python用来操作文件很方便的一个包
import pandas as pd
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
使用d2l里面的一个小规模样本来代替完整的 CIFAR-10 数据集,包含前1000个训练图像和5个随机测试图像的数据集的小规模样本
d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
'2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')
# 如果使用完整的Kaggle竞赛的数据集,设置demo为False
demo = True
if demo:
data_dir = d2l.download_extract('cifar10_tiny')
else:
data_dir = '../data/cifar-10/'
整理数据集
我们需要整理数据集来训练和测试模型。
首先,我们用以下函数读取CSV文件中的标签,它返回一个字典,该字典将文件名中不带扩展名的部分映射到其标签。
def read_csv_labels(fname):
"""读取fname来给标签字典返回一个文件名"""
with open(fname, 'r') as f:
# 跳过文件头行(列名)
lines = f.readlines()[1:]
tokens = [l.rstrip().split(',') for l in lines]
return dict(((name, label) for name, label in tokens))
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
print('# 训练样本 :', len(labels))
print('# 类别 :', len(set(labels.values())))
# 训练样本 : 1000
# 类别 : 10
将验证集从原始的训练集中拆分出来
我们定义 reorg_train_valid
函数来将验证集从原始的训练集中拆分出来。
此函数中的参数 valid_ratio
是验证集中的样本数与原始训练集中的样本数之比。 更具体地说,令 n 等于样本最少的类别中的图像数量,而 r 是比率。验证集将为每个类别拆分出 max(⌊nr⌋,1) 张图像。
让我们以valid_ratio=0.1
为例,由于原始的训练集有50000张图像,因此 train_valid_test/train
路径中将有45000张图像用于训练,而剩下5000张图像将作为路径 train_valid_test/valid
中的验证集。组织数据集后,同类别的图像将被放置在同一文件夹下。
def copyfile(filename, target_dir):
"""将文件复制到目标目录"""
os.makedirs(target_dir, exist_ok=True)
shutil.copy(filename, target_dir)
def reorg_train_valid(data_dir, labels, valid_ratio):
"""将验证集从原始的训练集中拆分出来"""
# 训练数据集中样本最少的类别中的样本数
n = collections.Counter(labels.values()).most_common()[-1][1]
# 验证集中每个类别的样本数
n_valid_per_label = max(1, math.floor(n * valid_ratio))
label_count = {}
for train_file in os.listdir(os.path.join(data_dir, 'train')):
label = labels[train_file.split('.')[0]]
fname = os.path.join(data_dir, 'train', train_file)
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'train_valid', label))
if label not in label_count or label_count[label] < n_valid_per_label:
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'valid', label))
label_count[label] = label_count.get(label, 0) + 1
else:
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'train', label))
return n_valid_per_label
整理测试集
下面的reorg_test
函数用来在预测期间整理测试集,以方便读取。
def reorg_test(data_dir):
"""在预测期间整理测试集,以方便读取"""
for test_file in os.listdir(os.path.join(data_dir, 'test')):
copyfile(os.path.join(data_dir, 'test', test_file),
os.path.join(data_dir, 'train_valid_test', 'test',
'unknown'))
使用函数
最后,我们使用一个函数来调用前面定义的函数read_csv_labels
、reorg_train_valid
和reorg_test
。
在这里,我们只将样本数据集的批量大小设置为32。 在实际训练和测试中,应该使用Kaggle竞赛的完整数据集,并将 batch_size
设置为更大的整数,例如128。 我们将10%的训练样本作为调整超参数的验证集。
def reorg_cifar10_data(data_dir, valid_ratio):
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
reorg_train_valid(data_dir, labels, valid_ratio)
reorg_test(data_dir)
batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)
图像增广
使用图像增广来解决过拟合的问题。
例如在训练中,可以随机水平翻转图像;还可以对彩色图像的三个RGB通道执行标准化。 下面,列出了其中一些可以调整的操作。
transform_train = torchvision.transforms.Compose([
# 在高度和宽度上将图像放大到40像素的正方形
torchvision.transforms.Resize(40),
# 随机裁剪出一个高度和宽度均为40像素的正方形图像,
# 生成一个面积为原始图像面积0.64~1倍的小正方形,
# 然后将其缩放为高度和宽度均为32像素的正方形
torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),
ratio=(1.0, 1.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
# 标准化图像的每个通道
torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
[0.2023, 0.1994, 0.2010])])
在测试期间,我们只对图像执行标准化,以消除评估结果中的随机性。
transform_test = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
[0.2023, 0.1994, 0.2010])])
读取数据集
每个样本都包括一张图片和一个标签。
在训练期间,我们需要指定上面定义的所有图像增广操作。当验证集在超参数调整过程中用于模型评估时,不应引入图像增广的随机性。在最终预测之前,我们根据训练集和验证集组合而成的训练模型进行训练,以充分利用所有标记的数据。
train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),
transform=transform_train) for folder in ['train', 'train_valid']]
valid_ds, test_ds = [torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train_valid_test', folder),
transform=transform_test) for folder in ['valid', 'test']]
指定上面定义的所有图像增广操作
train_iter, train_valid_iter = [torch.utils.data.DataLoader(
# shuffle要开随机梯度下降,drop_last:如果最后一组不满batch_size,true会丢掉最后一节
dataset, batch_size, shuffle=True, drop_last=True)
for dataset in (train_ds, train_valid_ds)]
valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
drop_last=True)
test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
drop_last=False) # 但是test的不能丢
定义模型
模型直接用了一个ResNet-18
def get_net():
num_classes = 10
net = d2l.resnet18(num_classes, 3)
return net
loss = nn.CrossEntropyLoss(reduction="none")
定义训练函数
# lr_period,lr_decay:学习率下降的一种方法
# lr_period:每隔多少了epoch
# lr_decay:下降多少(0.5:减半)
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay):
trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9,
weight_decay=wd)
# 调整lr 把decay值*lr
scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
num_batches, timer = len(train_iter), d2l.Timer()
legend = ['train loss', 'train acc']
if valid_iter is not None:
legend.append('valid acc')
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=legend)
# 多GPU训练
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
for epoch in range(num_epochs):
net.train()
metric = d2l.Accumulator(3)
# 为了展示 画图用的 正常训练不需要
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = d2l.train_batch_ch13(net, features, labels,
loss, trainer, devices)
metric.add(l, acc, labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[2],
None))
if valid_iter is not None:
valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)
animator.add(epoch + 1, (None, None, valid_acc))
# 每个epoch之后更新一下lr
scheduler.step()
measures = (f'train loss {metric[0] / metric[2]:.3f}, '
f'train acc {metric[1] / metric[2]:.3f}')
if valid_iter is not None:
measures += f', valid acc {valid_acc:.3f}'
print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'
f' examples/sec on {str(devices)}')
训练和验证数据集
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 2e-4, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay)
对测试集进行分类并提交结果
在获得具有超参数的满意的模型后,我们使用所有标记的数据(包括验证集)来重新训练模型并对测试集进行分类。
net, preds = get_net(), []
# 使用完整的数据集训练模型
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
lr_decay)
for X, _ in test_iter:
y_hat = net(X.to(devices[0]))
# 占比最大的值取出来
preds.extend(y_hat.argmax(dim=1).type(torch.int32).cpu().numpy())
sorted_ids = list(range(1, len(test_ds) + 1))
sorted_ids.sort(key=lambda x: str(x))
df = pd.DataFrame({'id': sorted_ids, 'label': preds})
df['label'] = df['label'].apply(lambda x: train_valid_ds.classes[x])
# 存成一个csv
df.to_csv('submission.csv', index=False)