东大成贤资源库-数据挖掘技术与应用 实验一:数据预处理_熟悉数据挖掘数据预处理流程。 基于给定的数据集(csv)文件,完成下列数据处理。 1

news2024/11/15 17:18:49

【实验内容】

  1. 程序清单
import pandas as pd
import numpy as np

# 读入文件,存放在字典data里
data = pd.read_csv("D:\\Desktop\\data1.csv")

# 填入Id列空缺的值
for i in range(1,len(data)):
    if pd.isnull(data['Id'][i]):
        data['Id'][i]=i+1

# Id属性列去重,保留重复时第一个值,默认将原来的东西覆盖
data.drop_duplicates(subset=['Id'],keep='first',inplace=True)

# 如果字典内有表格是NaN,把他替换为0
for (name,value) in data.items():
    for i in range(1,len(data[name])): #对于name列的所有单元格
        if pd.isnull(data[name][i]):
            data[name][i]=0

# 为数据增加一个字段Average, 默认赋值为对每一行第1列(Id是第0列)以后所有数据取平均值,对行执行这个操作
# 关于axis:Keep in mind that axis=1 in mean(axis=1) is used to calculate the mean across each row.
# If you used axis=0 instead, the mean would be calculated across each column.
data = data.assign(Average = np.mean(data.iloc[:, 1:], axis=1))
# print(data)

# 将每一行Average的值的精度缩小到16位浮点数
data['Average'] = data['Average'].astype("float16")

# 按照 Average降序排序,覆盖以前的东西
data.sort_values("Average",ascending=False,inplace=True)
print(data)

# 降序排序后越靠前的行值就越大。data.iloc[x,y]代表data字典内第x行第y列(第y个属性)
# 这里的意思是在整个data范围内从第一个(降序,最大的)开始搜,搜到不对的了就停下
for i in range(len(data)):
    if data.iloc[i, -1] != data.iloc[0,-1]:
        break
    else:
        print(data.iloc[i,:])

# range(1,4)实际上就是1,2,3,对应语文数学英语三个列,cnt用户计数其中大于60的学生个数
for i in range(1,4):
    cnt = 0
    for j in range(len(data)):
        if data.iloc[j,i]>=60:
            cnt += 1
    print(cnt)
# 将我们处理完的data输出
data.to_csv("E:\\private\\实验报告\\数据挖掘\\230905-1\\data1.csv")
2.截图:

【实验体会】

我从这次实验中学到了:用pandas库读取csv文件作为一个python数据对象,与将其逆向至一个csv文件,用pd.isnull()方法判断是否为空值;用DataFrame对象自带的drop_duplicates()对一列数据去重,为数据通过assign的方式添加属性列并指定初始值。更改数据类型,对数据排序。以及通过iloc方法通过下标的形式切分数据表。

收获良多、感触颇丰!

以下是原始的data1.csv表:

IdChineseMathEnglish
1667057
2677159
3687260
4707362
5717463
6727564
7737565
8737667
9747768
10757769
11767870
12767871
13777972
14787973
15787974
16787975
17797975
18797976
19797977
20797977
21797978
797978
23797879
24797879
25797779
797779
27787679
28787679
29777579
307479
31767379
32757279
33747178
737078
35736977
36726877
37716776
38706676
39686575
40676374
676374
42656172
43645971
44625870
45625870
46605568
585467
48575266
49565165
50544963

最全的Linux教程,Linux从入门到精通

======================

  1. linux从入门到精通(第2版)

  2. Linux系统移植

  3. Linux驱动开发入门与实战

  4. LINUX 系统移植 第2版

  5. Linux开源网络全栈详解 从DPDK到OpenFlow

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

第一份《Linux从入门到精通》466页

====================

内容简介

====

本书是获得了很多读者好评的Linux经典畅销书**《Linux从入门到精通》的第2版**。本书第1版出版后曾经多次印刷,并被51CTO读书频道评为“最受读者喜爱的原创IT技术图书奖”。本书第﹖版以最新的Ubuntu 12.04为版本,循序渐进地向读者介绍了Linux 的基础应用、系统管理、网络应用、娱乐和办公、程序开发、服务器配置、系统安全等。本书附带1张光盘,内容为本书配套多媒体教学视频。另外,本书还为读者提供了大量的Linux学习资料和Ubuntu安装镜像文件,供读者免费下载。

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

本书适合广大Linux初中级用户、开源软件爱好者和大专院校的学生阅读,同时也非常适合准备从事Linux平台开发的各类人员。

需要《Linux入门到精通》、《linux系统移植》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论

加入社区》https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2117302.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

虚拟机的安装步骤

我这里使用的是VMware 1.下载centos7 2.配置 跟这图来就好 开启虚拟机 第一个页面直接回车,忘了截图 等待安装 选择语言,看自己 点击完成 点击继续安装 设置账号密码 然后等待就行 安装完成之后会有一个重启,点击(又忘了截图) 完成许可和网络 最后就可以了

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵…

数据权限的设计与实现系列7——前端筛选器组件Everright-filter用法说明

背景 官方给了全局性的介绍和示例,不过到了具体使用环节,介绍就不是那么清楚明确了,往往是直接放 demo,需要去推测和揣测,然后动手验证。去百度了下,也没找到现成的对该组件的使用说明,得以开荒…

Unreal Fest 2024 虚幻引擎影视动画制作的普遍问题

一 毛发缓存数据巨大的问题(及5个解决方案) 在引擎里模拟毛发,并且把它缓存下来,我们就不需要从外部导入了,所以我们要解决的问题就是怎么样在引擎里自由地控制毛发 1.物理场控制 延申 [技术分享]《UE中的世界物理场…

迭代器模式iterator

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/iterator 不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介&am…

P1071 [NOIP2009 提高组] 潜伏者

1.题目太长要耐性总结出题目的要求 2.map中count的使用方法 #include <bits/stdc.h> using namespace std; map<char, char>m0, m1;//m0记录密文对明文&#xff0c;m1记录明文对密文int main() {string x, y, z ;//x为密文&#xff0c;y为明文&#xff0c;z为待翻…

SpringBoot+Redis极简整合

1 前言 Redis是现在最受欢迎的NoSQL数据库之一&#xff0c;下面将以最简洁的代码演示&#xff0c;在SpringBoot中使用redis。 2 下载安装Redis 2.1 下载 Redis3.x windows安装版下载地址 2.2 安装到任意位置 一直Next到完即可。 2.3 启动 打开安装目录&#xff0c;点击…

【数据结构】堆——堆排序与海量TopK问题

目录 前言一、堆排序1.1 整体思路1.2 代码部分1.3 建堆的时间复杂度1.4 堆排序的总结 二、向下调整算法的时间复杂度三、向上调整算法的复杂度四、海量TopK问题4.1 TopK题目 总结 前言 上一篇我们学习了堆的数据结构&#xff0c;现在我们来看看堆的日常应用和排序 一、堆排序 …

内网安全-横向移动【3】

1.域横向移动-内网服务-Exchange探针 Exchange是一个电子右键服务组件&#xff0c;由微软公司开发。它不仅是一个邮件系统&#xff0c;还是一个消息与协作系统。Exchange可以用来构建企业、学校的邮件系统&#xff0c;同时也是一个协作平台&#xff0c;可以基于此开发工作流、…

用广播星历计算卫星运动的平均角速度

用广播星历计算卫星位置 1.计算卫星运动的平均角速度 首先根据广播星历中给出的参数计算参考时刻的平均角速度: 式中&#xff0c;GM为万有引力常数G与地球总质量M之乘积&#xff0c;其值为GM3.98600510^14b m3/s2。 然后根据广播星历中给定的摄动参数计算观测时刻卫星的平均…

模版方法模式template method

学习笔记&#xff0c;原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架&#xff0c; 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresearch/segment-…

C++-----STL简介(了解)

1. 什么是STL STL(standard template libaray-标准模板库)&#xff1a;是C标准库的重要组成部分&#xff0c;不仅是一个可复用的组件库&#xff0c;而且是一个包罗数据结构与算法的软件框架。 2. STL的版本 原始版本 Alexander Stepanov、Meng Lee 在惠普实验室完成的原始版…

手撕Python之生成器、装饰器、异常

1.生成器 生成器的定义方式&#xff1a;在函数中使用yield yield值&#xff1a;将值返回到调用处 我们需要使用next()进行获取yield的返回值 yield的使用以及生成器函数的返回的接收next() def test():yield 1,2,3ttest() print(t) #<generator object test at 0x01B77…

MATLAB-基于高斯过程回归GPR的数据回归预测

目录 目录 1 介绍 1. 1 高斯过程的基本概念 1.2 核函数&#xff08;协方差函数&#xff09; 1.3 GPR 的优点 1.4. GPR 的局限 2 运行结果 3 核心代码 1 介绍 高斯过程回归&#xff08;Gaussian Process Regression, GPR&#xff09;是一种强大的非参数贝叶斯方法&…

JAVA- 多线程

一&#xff0c;多线程的概念 1.并行与并发 并行&#xff1a;多个任务在同一时刻在cpu 上同时执行并发&#xff1a;多个任务在同一时刻在cpu 上交替执行 2.进程与线程 进程&#xff1a;就是操作系统中正在运行的一个应用程序。所以进程也就是“正在进行的程序”。&#xff0…

Java 数据类型详解:基本数据类型与引用数据类型

在 Java 编程语言中&#xff0c;数据类型主要分为两大类&#xff1a;基本数据类型和引用数据类型。理解这两种类型的区别、使用场景及其转换方式是学习 Java 的基础。本文将深入探讨这两类数据类型的特点&#xff0c;并展示自动类型转换、强制类型转换以及自动拆箱和封箱的使用…

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retr…

AI预测福彩3D采取888=3策略+和值012路或胆码测试9月8日新模型预测第81弹

经过80期的测试&#xff0c;当然有很多彩友也一直在观察我每天发的预测结果&#xff0c;得到了一个非常有价值的信息&#xff0c;那就是9码定位的命中率非常高&#xff0c;70多期一共只错了8次&#xff0c;这给喜欢打私房菜的朋友提供了极高价值的预测结果~当然了&#xff0c;大…