USART—串口通讯
大纲
- 串口通讯协议简介
- STM32 的 USART 简介
- USART 功能框图
- USART 初始化结构体详解
具体案例
串口通讯协议简介
物理层
串口通讯的物理层有很多标准及变种,我们主要讲解 RS-232 标准,RS-232 标准主要规定了信号的用途、通讯接口以及信号的电平标准
使用 RS-232 标准的串口设备间常见的通讯结构见下图
在上面的通讯方式中,两个通讯设备的“DB9 接口”之间通过串口信号线建立起连接,串口信号线中使用“RS-232 标准”传输数据信号。由于 RS-232 电平标准的信号不能直接被控制器直接识别,所以这些信号会经过一个“电平转换芯片”转换成控制器能识别的“TTL 标准”的电平信号,才能实现通讯。
电平标准
根据通讯使用的电平标准不同,串口通讯可分为 TTL 标准及 RS-232 标准,见表 TTL 电平标准与RS232 电平标准 。
我们知道常见的电子电路中常使用 TTL 的电平标准,理想状态下,使用 5V 表示二进制逻辑 1,使用 0V 表示逻辑 0;而为了增加串口通讯的远距离传输及抗干扰能力,它使用-15V 表示逻辑 1,+15V 表示逻辑 0。使用 RS232 与 TTL 电平校准表示同一个信号时的对比见图 RS-232 与 TTL 电平标准下表示同一个信号 。
因为控制器一般使用 TTL 电平标准,所以常常会使用 MAX3232 芯片对 TTL 及 RS-232 电平的信号进行互相转换。
协议层
串口通讯的数据包由发送设备通过自身的 TXD 接口传输到接收设备的 RXD 接口。在串口通讯的协议层中,规定了数据包的内容,它由启始位、主体数据、校验位以及停止位组成,通讯双方的数据包格式要约定一致才能正常收发数据
波特率
本章中主要讲解的是串口异步通讯,异步通讯中由于没有时钟信号 (如前面讲解的 DB9 接口中是没有时钟信号的),所以两个通讯设备之间需要约定好波特率,即每个码元的长度,以便对信号进行解码,图串口数据包的基本组成 中用虚线分开的每一格就是代表一个码元。常见的波特率为 4800、9600、115200 等。
通讯的起始和停止信号
串口通讯的一个数据包从起始信号开始,直到停止信号结束。数据包的起始信号由一个逻辑 0 的数据位表示,而数据包的停止信号可由 0.5、1、1.5 或 2 个逻辑 1 的数据位表示,只要双方约定一致即可。
有效数据
在数据包的起始位之后紧接着的就是要传输的主体数据内容,也称为有效数据,有效数据的长度常被约定为 5、6、7 或 8 位长。
数据校验
在有效数据之后,有一个可选的数据校验位。由于数据通信相对更容易受到外部干扰导致传输数据出现偏差,可以在传输过程加上校验位来解决这个问题。校验方法有奇校验 (odd)、偶校验(even)、0 校验 (space)、1 校验 (mark) 以及无校验 (noparity)。
奇校验要求有效数据和校验位中“1”的个数为奇数,比如一个 8 位长的有效数据为:01101001,此时总共有 4 个“1”,为达到奇校验效果,校验位为“1”,最后传输的数据将是 8 位的有效数据加上 1 位的校验位总共 9 位。
偶校验与奇校验要求刚好相反,要求帧数据和校验位中“1”的个数为偶数,比如数据帧:11001010,此时数据帧“1”的个数为 4 个,所以偶校验位为“0”。
0 校验是不管有效数据中的内容是什么,校验位总为“0”,1 校验是校验位总为“1”。
STM32 的 USART 简介
通用同步异步收发器 是一个串行通信设备,可以与外部设备进行全双工数据交换。有别于 USART 还有一个 UART,它是在USART 基础上裁剪掉了同步通信功能,只有异步通信。简单区分同步和异步就是看通信时需不需要对外提供时钟输出,我们平时用的串口通信基本都是 UART。
串行通信一般是以帧格式传输数据,即是一帧一帧的传输,每帧包含有起始信号、数据信息、停止信息,可能还有校验信息。USART 就是对这些传输参数有具体规定,当然也不是只有唯一一
个参数值,很多参数值都可以自定义设置,只是增强它的兼容性。
USART 满足外部设备对工业标准 NRZ 异步串行数据格式的要求,并且使用了小数波特率发生器,可以提供多种波特率,使得它的应用更加广泛。USART 支持同步单向通信和半双工单线通
信;还支持局域互连网络 LIN、智能卡 (SmartCard) 协议与 lrDA(红外线数据协会) SIR ENDEC 规范。
USART 支持使用 DMA,可实现高速数据通信
USART 在 STM32 应用最多莫过于“打印”程序信息,一般在硬件设计时都会预留一个 USART通信接口连接电脑,用于在调试程序是可以把一些调试信息“打印”在电脑端的串口调试助手工具上,从而了解程序运行是否正确、如果出错哪具体哪里出错等等。
USART 功能框图
功能引脚
TX:发送数据输出引脚
RX:接收数据输入引脚
SW_RX:数据接收引脚,只用于单线和智能卡模式,属于内部引脚,没有具体外部引脚
nRTS:请求以发送 (Request To Send),n 表示低电平有效。如果使能 RTS 流控制,当 USART 接收器准备好接收新数据时就会将 nRTS 变成低电平;当接收寄存器已满时,nRTS 将被设置为高电平。该引脚只适用于硬件流控制
nCTS:清除以发送 (Clear To Send),n 表示低电平有效。如果使能 CTS 流控制,发送器在发送下一帧数据之前会检测 nCTS 引脚,如果为低电平,表示可以发送数据,如果为高电平则在发送完当前数据帧之后停止发送。该引脚只适用于硬件流控制
SCLK:发送器时钟输出引脚。这个引脚仅适用于同步模式
数据寄存器
USART 数据寄存器 (USART_DR) 只有低 9 位有效,并且第 9 位数据是否有效要取决于 USART控制寄存器 1(USART_CR1) 的 M 位设置,当 M 位为 0 时表示 8 位数据字长,当 M 位为 1 表示 9位数据字长,我们一般使用 8 位数据字长
USART_DR 包含了已发送的数据或者接收到的数据。USART_DR 实际是包含了两个寄存器,一个专门用于发送的可写 TDR,一个专门用于接收的可读 RDR。当进行发送操作时,往 USART_DR写入数据会自动存储在 TDR 内;当进行读取操作时,向 USART_DR 读取数据会自动提取 RDR数据。
TDR 和 RDR 都是介于系统总线和移位寄存器之间。串行通信是一个位一个位传输的,发送时把TDR 内容转移到发送移位寄存器,然后把移位寄存器数据每一位发送出去,接收时把接收到的每一位顺序保存在接收移位寄存器内然后才转移到 RDR
USART 支持 DMA 传输,可以实现高速数据传输(不会占据CPU)
控制器
USART 有专门控制发送的发送器、控制接收的接收器,还有唤醒单元、中断控制等等。使用USART 之前需要向 USART_CR1 寄存器的 UE 位置 1 使能 USART,UE 位用来开启供给给串口的时钟。发送或者接收数据字长可选 8 位或 9 位,由 USART_CR1 的 M 位控制(不是所有的寄存器都有图,自己去stm32操作手册查询)
发送器
当 USART_CR1 寄存器的发送使能位 TE 置 1 时,启动数据发送,发送移位寄存器的数据会在 TX引脚输出,低位在前,高位在后。如果是同步模式 SCLK 也输出时钟信号。
一个字符帧发送需要三个部分:起始位 + 数据帧 + 停止位。起始位是一个位周期的低电平,位周期就是每一位占用的时间;数据帧就是我们要发送的 8 位或 9 位数据,数据是从最低位开始传输
的;停止位是一定时间周期的高电平。
停止位时间长短是可以通过 USART 控制寄存器 2(USART_CR2) 的 STOP[1:0] 位控制,可选 0.5个、1 个、1.5 个和 2 个停止位。默认使用 1 个停止位。2 个停止位适用于正常 USART 模式、单线模式和调制解调器模式。0.5 个和 1.5 个停止位用于智能卡模式。
当发送使能位 TE 置 1 之后,发送器开始会先发送一个空闲帧 (一个数据帧长度的高电平),接下来就可以往 USART_DR 寄存器写入要发送的数据。在写入最后一个数据后,需要等待 USART 状
态寄存器 (USART_SR) 的 TC 位为 1,表示数据传输完成,如果 USART_CR1 寄存器的 TCIE 位置1,将产生中断。
在发送数据时,编程的时候有几个比较重要的标志位我们来总结下:
接收器
如果将 USART_CR1 寄存器的 RE 位置 1,使能 USART 接收,使得接收器在 RX 线开始搜索起始位。在确定到起始位后就根据 RX 线电平状态把数据存放在接收移位寄存器内。接收完成后就把接收移位寄存器数据移到 RDR 内,并把 USART_SR 寄存器的 RXNE 位置 1,同时如果USART_CR2 寄存器的 RXNEIE 置 1 的话可以产生中断
小数波特率生成
波特率指数据信号对载波的调制速率,它用单位时间内载波调制状态改变次数来表示,单位为波特。比特率指单位时间内传输的比特数,单位 bit/s(bps)。对于 USART 波特率与比特率相等,以后不区分这两个概念。波特率越大,传输速率越快。
USART 的发送器和接收器使用相同的波特率。计算公式如下:
其中,fPLCK 为 USART 时钟,USARTDIV 是一个存放在波特率寄存器 (USART_BRR) 的一个无符号定点数。其中 DIV_Mantissa[11:0] 位定义 USARTDIV 的整数部分,DIV_Fraction[3:0] 位定义USARTDIV 的小数部分
波特率的常用值有 2400、9600、19200、115200。下面以实例讲解如何设定寄存器值得到波特率的值
我们知道 USART1 使用 APB2 总线时钟,最高可达 72MHz,其他 USART 的最高频率为 36MHz。我们选取 USART1 作为实例讲解,即 fPLCK=72MHz。为得到 115200bps 的波特率,此时:
解得 USARTDIV=39.0625,可算得 DIV_Fraction=0.0625*16=1=0x01,DIV_Mantissa=39=0x27,即应该设置 USART_BRR 的值为 0x271
中断控制
USART 有多个中断请求事件,如下图:
USART 初始化结构体详解
USART_InitTypeDef,结构体成员用于设置外设工作参数,并由外设初始化配置函数,比如 USART_Init() 调用,这些设定参数将会设置外设相应的寄存器,达到配置外设工作环境的目的
typedef struct {
uint32_t USART_BaudRate; // 波特率
uint16_t USART_WordLength; // 字长
uint16_t USART_StopBits; // 停止位
uint16_t USART_Parity; // 校验位
uint16_t USART_Mode; // USART 模式
uint16_t USART_HardwareFlowControl; // 硬件流控制
} USART_InitTypeDef;
-
USART_BaudRate:波特率设置。一般设置为 2400、9600、19200、115200。标准库函数会根据设定值计算得到 USARTDIV 值,从而设置 USART_BRR 寄存器值。
-
USART_WordLength:数据帧字长,可选 8 位或 9 位。它设定 USART_CR1 寄存器的 M 位的值。如果没有使能奇偶校验控制,一般使用 8 数据位;如果使能了奇偶校验则一般设置为 9 数据位。
-
USART_StopBits:停止位设置,可选 0.5 个、1 个、1.5 个和 2 个停止位,它设定 USART_CR2寄存器的 STOP[1:0] 位的值,一般我们选择 1 个停止位。
-
USART_Parity:奇偶校验控制选择,可选 USART_Parity_No(无校验)、USART_Parity_Even(偶校验) 以及 USART_Parity_Odd(奇校验),它设定 USART_CR1 寄存器的 PCE 位和 PS 位的值。
-
USART_Mode:USART 模式选择,有 USART_Mode_Rx 和 USART_Mode_Tx,允许使用逻辑或运算选择两个,它设定USART_CR1 寄存器的 RE 位和 TE 位。
-
USART_HardwareFlowControl:硬件流控制选择,只有在硬件流控制模式才有效,可选有使能RTS、使能 CTS、同时使能 RTS 和 CTS、不使能硬件流。当使用同步模式时需要配置 SCLK 引脚输出脉冲的属性,标准库使用一个时钟初始化结构体USART_ClockInitTypeDef 来设置,该结构体内容也只有在同步模式才需要设置。
typedef struct {
uint16_t USART_Clock; // 时钟使能控制
uint16_t USART_CPOL; // 时钟极性
uint16_t USART_CPHA; // 时钟相位
uint16_t USART_LastBit; // 最尾位时钟脉冲
} USART_ClockInitTypeDef;
-
USART_Clock:同步模式下 SCLK 引脚上时钟输出使能控制,可选禁止时钟输出 (USART_Clock_Disable) 或开启时钟输出 (USART_Clock_Enable);如果使用同步模式发送,一般都需要开启时钟。它设定 USART_CR2 寄存器的 CLKEN 位的值。
-
USART_CPOL:同步模式下 SCLK 引脚上输出时钟极性设置,可设置在空闲时 SCLK 引脚为低电平 (USART_CPOL_Low) 或高电平 (USART_CPOL_High)。它设定 USART_CR2 寄存器的 CPOL位的值。
-
USART_CPHA:同步模式下 SCLK 引脚上输出时钟相位设置,可设置在时钟第一个变化沿捕获数据 (USART_CPHA_1Edge) 或在时钟第二个变化沿捕获数据。它设定 USART_CR2 寄存器的CPHA 位的值。USART_CPHA 与 USART_CPOL 配合使用可以获得多种模式时钟关系。
-
USART_LastBit:选择在发送最后一个数据位的时候时钟脉冲是否在 SCLK 引脚输出,可以是不输出脉冲 (USART_LastBit_Disable)、输出脉冲(USART_LastBit_Enable)。它设定 USART_CR2 寄存器的 LBCL 位的值。
注意事项
使用 fput 和 fgetc 函数达到重定向 C 语言标准库输入输出函数必须在 MDK的工程选项把“Use MicroLIB”勾选上,MicoroLIB 是缺省 C 库的备选库,它对标准 C 库进行了高度优化使代码更少,占用更少资源