USART—串口通讯

news2024/9/17 7:39:54

USART—串口通讯

大纲

  1. 串口通讯协议简介
  2. STM32 的 USART 简介
  3. USART 功能框图
  4. USART 初始化结构体详解

具体案例

串口通讯协议简介

物理层

串口通讯的物理层有很多标准及变种,我们主要讲解 RS-232 标准,RS-232 标准主要规定了信号的用途通讯接口以及信号的电平标准
使用 RS-232 标准的串口设备间常见的通讯结构见下图
在这里插入图片描述
在上面的通讯方式中,两个通讯设备的“DB9 接口”之间通过串口信号线建立起连接,串口信号线中使用“RS-232 标准”传输数据信号。由于 RS-232 电平标准的信号不能直接被控制器直接识别,所以这些信号会经过一个“电平转换芯片”转换成控制器能识别的“TTL 标准”的电平信号,才能实现通讯。

电平标准

根据通讯使用的电平标准不同,串口通讯可分为 TTL 标准及 RS-232 标准,见表 TTL 电平标准与RS232 电平标准 。
在这里插入图片描述
我们知道常见的电子电路中常使用 TTL 的电平标准,理想状态下,使用 5V 表示二进制逻辑 1,使用 0V 表示逻辑 0;而为了增加串口通讯的远距离传输及抗干扰能力,它使用-15V 表示逻辑 1,+15V 表示逻辑 0。使用 RS232 与 TTL 电平校准表示同一个信号时的对比见图 RS-232 与 TTL 电平标准下表示同一个信号 。
在这里插入图片描述
因为控制器一般使用 TTL 电平标准,所以常常会使用 MAX3232 芯片对 TTL 及 RS-232 电平的信号进行互相转换。

协议层

串口通讯的数据包由发送设备通过自身的 TXD 接口传输到接收设备的 RXD 接口。在串口通讯的协议层中,规定了数据包的内容,它由启始位、主体数据、校验位以及停止位组成,通讯双方的数据包格式要约定一致才能正常收发数据
在这里插入图片描述

波特率

本章中主要讲解的是串口异步通讯,异步通讯中由于没有时钟信号 (如前面讲解的 DB9 接口中是没有时钟信号的),所以两个通讯设备之间需要约定好波特率,即每个码元的长度,以便对信号进行解码,图串口数据包的基本组成 中用虚线分开的每一格就是代表一个码元。常见的波特率为 4800、9600、115200 等。

通讯的起始和停止信号

串口通讯的一个数据包从起始信号开始,直到停止信号结束。数据包的起始信号由一个逻辑 0 的数据位表示,而数据包的停止信号可由 0.5、1、1.5 或 2 个逻辑 1 的数据位表示,只要双方约定一致即可。

有效数据

在数据包的起始位之后紧接着的就是要传输的主体数据内容,也称为有效数据,有效数据的长度常被约定为 5、6、7 或 8 位长。

数据校验

在有效数据之后,有一个可选的数据校验位。由于数据通信相对更容易受到外部干扰导致传输数据出现偏差,可以在传输过程加上校验位来解决这个问题。校验方法有奇校验 (odd)、偶校验(even)、0 校验 (space)、1 校验 (mark) 以及无校验 (noparity)。

奇校验要求有效数据和校验位中“1”的个数为奇数,比如一个 8 位长的有效数据为:01101001,此时总共有 4 个“1”,为达到奇校验效果,校验位为“1”,最后传输的数据将是 8 位的有效数据加上 1 位的校验位总共 9 位。

偶校验与奇校验要求刚好相反,要求帧数据和校验位中“1”的个数为偶数,比如数据帧:11001010,此时数据帧“1”的个数为 4 个,所以偶校验位为“0”。

0 校验是不管有效数据中的内容是什么,校验位总为“0”,1 校验是校验位总为“1”。

STM32 的 USART 简介

通用同步异步收发器 是一个串行通信设备,可以与外部设备进行全双工数据交换。有别于 USART 还有一个 UART,它是在USART 基础上裁剪掉了同步通信功能,只有异步通信。简单区分同步和异步就是看通信时需不需要对外提供时钟输出,我们平时用的串口通信基本都是 UART。

串行通信一般是以帧格式传输数据,即是一帧一帧的传输,每帧包含有起始信号、数据信息、停止信息,可能还有校验信息。USART 就是对这些传输参数有具体规定,当然也不是只有唯一一
个参数值,很多参数值都可以自定义设置,只是增强它的兼容性。

USART 满足外部设备对工业标准 NRZ 异步串行数据格式的要求,并且使用了小数波特率发生器,可以提供多种波特率,使得它的应用更加广泛。USART 支持同步单向通信和半双工单线通
信;还支持局域互连网络 LIN、智能卡 (SmartCard) 协议与 lrDA(红外线数据协会) SIR ENDEC 规范。

USART 支持使用 DMA,可实现高速数据通信

USART 在 STM32 应用最多莫过于“打印”程序信息,一般在硬件设计时都会预留一个 USART通信接口连接电脑,用于在调试程序是可以把一些调试信息“打印”在电脑端的串口调试助手工具上,从而了解程序运行是否正确、如果出错哪具体哪里出错等等。

USART 功能框图

在这里插入图片描述

功能引脚

TX:发送数据输出引脚

RX:接收数据输入引脚

SW_RX:数据接收引脚,只用于单线和智能卡模式,属于内部引脚,没有具体外部引脚

nRTS:请求以发送 (Request To Send),n 表示低电平有效。如果使能 RTS 流控制,当 USART 接收器准备好接收新数据时就会将 nRTS 变成低电平;当接收寄存器已满时,nRTS 将被设置为高电平。该引脚只适用于硬件流控制

nCTS:清除以发送 (Clear To Send),n 表示低电平有效。如果使能 CTS 流控制,发送器在发送下一帧数据之前会检测 nCTS 引脚,如果为低电平,表示可以发送数据,如果为高电平则在发送完当前数据帧之后停止发送。该引脚只适用于硬件流控制

SCLK:发送器时钟输出引脚。这个引脚仅适用于同步模式

数据寄存器

USART 数据寄存器 (USART_DR) 只有低 9 位有效,并且第 9 位数据是否有效要取决于 USART控制寄存器 1(USART_CR1) 的 M 位设置,当 M 位为 0 时表示 8 位数据字长,当 M 位为 1 表示 9位数据字长,我们一般使用 8 位数据字长

USART_DR 包含了已发送的数据或者接收到的数据。USART_DR 实际是包含了两个寄存器,一个专门用于发送的可写 TDR,一个专门用于接收的可读 RDR。当进行发送操作时,往 USART_DR写入数据会自动存储在 TDR 内;当进行读取操作时,向 USART_DR 读取数据会自动提取 RDR数据。

TDR 和 RDR 都是介于系统总线和移位寄存器之间。串行通信是一个位一个位传输的,发送时把TDR 内容转移到发送移位寄存器,然后把移位寄存器数据每一位发送出去,接收时把接收到的每一位顺序保存在接收移位寄存器内然后才转移到 RDR

USART 支持 DMA 传输,可以实现高速数据传输(不会占据CPU)

控制器

USART 有专门控制发送的发送器、控制接收的接收器,还有唤醒单元、中断控制等等。使用USART 之前需要向 USART_CR1 寄存器的 UE 位置 1 使能 USART,UE 位用来开启供给给串口的时钟。发送或者接收数据字长可选 8 位或 9 位,由 USART_CR1 的 M 位控制(不是所有的寄存器都有图,自己去stm32操作手册查询)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

发送器

当 USART_CR1 寄存器的发送使能位 TE 置 1 时,启动数据发送,发送移位寄存器的数据会在 TX引脚输出,低位在前,高位在后。如果是同步模式 SCLK 也输出时钟信号。

一个字符帧发送需要三个部分:起始位 + 数据帧 + 停止位。起始位是一个位周期的低电平,位周期就是每一位占用的时间;数据帧就是我们要发送的 8 位或 9 位数据,数据是从最低位开始传输
的;停止位是一定时间周期的高电平。

停止位时间长短是可以通过 USART 控制寄存器 2(USART_CR2) 的 STOP[1:0] 位控制,可选 0.5个、1 个、1.5 个和 2 个停止位。默认使用 1 个停止位。2 个停止位适用于正常 USART 模式、单线模式和调制解调器模式。0.5 个和 1.5 个停止位用于智能卡模式。

当发送使能位 TE 置 1 之后,发送器开始会先发送一个空闲帧 (一个数据帧长度的高电平),接下来就可以往 USART_DR 寄存器写入要发送的数据。在写入最后一个数据后,需要等待 USART 状
态寄存器 (USART_SR) 的 TC 位为 1,表示数据传输完成,如果 USART_CR1 寄存器的 TCIE 位置1,将产生中断。

在发送数据时,编程的时候有几个比较重要的标志位我们来总结下:
在这里插入图片描述

接收器

如果将 USART_CR1 寄存器的 RE 位置 1,使能 USART 接收,使得接收器在 RX 线开始搜索起始位。在确定到起始位后就根据 RX 线电平状态把数据存放在接收移位寄存器内。接收完成后就把接收移位寄存器数据移到 RDR 内,并把 USART_SR 寄存器的 RXNE 位置 1,同时如果USART_CR2 寄存器的 RXNEIE 置 1 的话可以产生中断

在这里插入图片描述

小数波特率生成

波特率指数据信号对载波的调制速率,它用单位时间内载波调制状态改变次数来表示,单位为波特。比特率指单位时间内传输的比特数,单位 bit/s(bps)。对于 USART 波特率与比特率相等,以后不区分这两个概念。波特率越大,传输速率越快。

USART 的发送器和接收器使用相同的波特率。计算公式如下:
在这里插入图片描述
其中,fPLCK 为 USART 时钟,USARTDIV 是一个存放在波特率寄存器 (USART_BRR) 的一个无符号定点数。其中 DIV_Mantissa[11:0] 位定义 USARTDIV 的整数部分,DIV_Fraction[3:0] 位定义USARTDIV 的小数部分

波特率的常用值有 2400、9600、19200、115200。下面以实例讲解如何设定寄存器值得到波特率的值

我们知道 USART1 使用 APB2 总线时钟,最高可达 72MHz,其他 USART 的最高频率为 36MHz。我们选取 USART1 作为实例讲解,即 fPLCK=72MHz。为得到 115200bps 的波特率,此时:
在这里插入图片描述
解得 USARTDIV=39.0625,可算得 DIV_Fraction=0.0625*16=1=0x01,DIV_Mantissa=39=0x27,即应该设置 USART_BRR 的值为 0x271

中断控制

USART 有多个中断请求事件,如下图:
在这里插入图片描述

USART 初始化结构体详解

USART_InitTypeDef,结构体成员用于设置外设工作参数,并由外设初始化配置函数,比如 USART_Init() 调用,这些设定参数将会设置外设相应的寄存器,达到配置外设工作环境的目的

typedef struct {
uint32_t USART_BaudRate; // 波特率
uint16_t USART_WordLength; // 字长
uint16_t USART_StopBits; // 停止位
uint16_t USART_Parity; // 校验位
uint16_t USART_Mode; // USART 模式
uint16_t USART_HardwareFlowControl; // 硬件流控制
} USART_InitTypeDef;
  1. USART_BaudRate:波特率设置。一般设置为 2400、9600、19200、115200。标准库函数会根据设定值计算得到 USARTDIV 值,从而设置 USART_BRR 寄存器值。

  2. USART_WordLength:数据帧字长,可选 8 位或 9 位。它设定 USART_CR1 寄存器的 M 位的值。如果没有使能奇偶校验控制,一般使用 8 数据位;如果使能了奇偶校验则一般设置为 9 数据位。

  3. USART_StopBits:停止位设置,可选 0.5 个、1 个、1.5 个和 2 个停止位,它设定 USART_CR2寄存器的 STOP[1:0] 位的值,一般我们选择 1 个停止位。

  4. USART_Parity:奇偶校验控制选择,可选 USART_Parity_No(无校验)、USART_Parity_Even(偶校验) 以及 USART_Parity_Odd(奇校验),它设定 USART_CR1 寄存器的 PCE 位和 PS 位的值。

  5. USART_Mode:USART 模式选择,有 USART_Mode_Rx 和 USART_Mode_Tx,允许使用逻辑或运算选择两个,它设定USART_CR1 寄存器的 RE 位和 TE 位。

  6. USART_HardwareFlowControl:硬件流控制选择,只有在硬件流控制模式才有效,可选有使能RTS、使能 CTS、同时使能 RTS 和 CTS、不使能硬件流。当使用同步模式时需要配置 SCLK 引脚输出脉冲的属性,标准库使用一个时钟初始化结构体USART_ClockInitTypeDef 来设置,该结构体内容也只有在同步模式才需要设置。

typedef struct {
uint16_t USART_Clock; // 时钟使能控制
uint16_t USART_CPOL; // 时钟极性
uint16_t USART_CPHA; // 时钟相位
uint16_t USART_LastBit; // 最尾位时钟脉冲
} USART_ClockInitTypeDef;
  1. USART_Clock:同步模式下 SCLK 引脚上时钟输出使能控制,可选禁止时钟输出 (USART_Clock_Disable) 或开启时钟输出 (USART_Clock_Enable);如果使用同步模式发送,一般都需要开启时钟。它设定 USART_CR2 寄存器的 CLKEN 位的值。

  2. USART_CPOL:同步模式下 SCLK 引脚上输出时钟极性设置,可设置在空闲时 SCLK 引脚为低电平 (USART_CPOL_Low) 或高电平 (USART_CPOL_High)。它设定 USART_CR2 寄存器的 CPOL位的值。

  3. USART_CPHA:同步模式下 SCLK 引脚上输出时钟相位设置,可设置在时钟第一个变化沿捕获数据 (USART_CPHA_1Edge) 或在时钟第二个变化沿捕获数据。它设定 USART_CR2 寄存器的CPHA 位的值。USART_CPHA 与 USART_CPOL 配合使用可以获得多种模式时钟关系。

  4. USART_LastBit:选择在发送最后一个数据位的时候时钟脉冲是否在 SCLK 引脚输出,可以是不输出脉冲 (USART_LastBit_Disable)、输出脉冲(USART_LastBit_Enable)。它设定 USART_CR2 寄存器的 LBCL 位的值。

注意事项

使用 fput 和 fgetc 函数达到重定向 C 语言标准库输入输出函数必须在 MDK的工程选项把“Use MicroLIB”勾选上,MicoroLIB 是缺省 C 库的备选库,它对标准 C 库进行了高度优化使代码更少,占用更少资源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2116495.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringCache之本地缓存

针对不同的缓存技术,需要实现不同的cacheManager,Spring定义了如下的cacheManger实现。 CacheManger 描述 SimpleCacheManager 使用简单的Collection来存储缓存,主要用于测试 ConcurrentMapCacheManager 使用ConcurrentMap作为缓存技术&…

spring揭秘20-spring事务02-编程式事务与声明式事务管理

文章目录 【README】【1】编程式事务管理【1.1】使用PlatformTransactionManager进行编程式事务管理【1.2】使用TransactionTemplate进行编程式事务管理【1.3】基于Savepoint的嵌套事务 【2】声明式事务管理【2.1】基于xml的声明式事务【2.1.1】使用ProxyFactory(Pr…

【基础篇】应届毕业生必备:机器学习面试题指南【1】

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 👍感谢小伙伴们点赞、关注! 《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发…

【软件工程】软件开发模型

三、瀑布模型 四、几种软件开发模型的主要特点 题目 判断题 选择题 小结

房贷计算及比较

本博客主要介绍: 1. 等额本金计算公式 2. 等额本息计算公式 3. 对比两种还款方式 4. 本示例:贷款金额为35万, 期限12年,年利率4.9% 等额本金计算 import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams[font.sans-s…

day1 QT

作业 #include "mywidget.h"MyWidget::MyWidget(QWidget *parent): QWidget(parent) {//设置窗口大小this->resize(1025,533);//固定窗口大小this->setFixedSize(1025,533);//设置窗口背景色,设置弧度//this->setStyleSheet("background-image:url(E:/…

JS_数据类型

一、JS的数据类型 数值类型 数值类型统一为 number,不区分整数和浮点数 字符串类型 字符串类型为 string 和JAVA中的String相似,JS中不严格区分单双引号,都可以用于表示字符串 布尔类型 布尔类型为boolean 和Java中的boolean相似,但是在JS的if语句中,非空字符串会被转换为…

SuperMap iManger 单个镜像更新流程

1. 下载镜像 docker pull registry.cn-beijing.aliyuncs.com/supermap/common-dashboard-api:11.1.1-240802-amd64 label 没区分架构,在 x64 环境 pull arm64 镜像 通过 --platformarm64 参数可以实现 docker pull mariadb:10.5.26 --platformarm64 # 指定拉取ar…

【重学 MySQL】十九、位运算符的使用

【重学 MySQL】十九、位运算符的使用 示例检查权限添加权限移除权限 在 MySQL 中,位运算符允许你直接在整数类型的列或表达式上进行位级操作。这些操作对于处理那些需要在二进制表示上进行直接修改或比较的场景特别有用,比如权限管理、状态标记等。 &…

20240909 每日AI必读资讯

重磅!TIME揭榜2024全球AI 100人:奥特曼、黄仁勋、姚期智、王小川等上榜 - TIME正式揭晓了第二届100位最具影响力AI人物名单!「领导者」榜单中,有我们耳熟能详的OpenAI CEO Sam Altman、英伟达CEO黄仁勋。而字节跳动联合创始人兼C…

数据结构(邓俊辉)学习笔记】排序 7——希尔排序:Shell 序列 + 输入敏感性

文章目录 1.邮资问题2. 定理K3.逆序对 1.邮资问题 此前曾经讲到希尔排序在对矩阵逐列排序时所使用的算法本身未必需要十分高效,而更重要的是应该具有输入敏感的特性,因此我们更倾向于使用插入排序。那么背后的具体原因又当如何解释呢?这里的…

ubuntu16.04 vim使用中文出现乱编文档处理

问题现象 vim 编译文件时出现乱码问题 解决方法 1. 中文语言包安装: apt-get install language-pack-zh-hans 2. 配置环境变量:echo "export LC_ALLzh_CN.UTF-8" >>/etc/bash.bashrc 3. 修改当前环境的字符集 /etc/default/locale cat /etc/default/locale…

国内外网络安全政策动态(2024年8月)

▶︎ 1.《关于进一步加强智能网联汽车准入、召回及软件在线升级管理的通知》公开征求意见 8月1日,工业和信息化部装备工业一司联合市场监管总局质量发展局组织编制了《关于进一步加强智能网联汽车准入、召回及软件在线升级管理的通知(征求意见稿&#…

事务的原理

1. 什么是事务 事务就是一个包含多个步骤的事情,这些步骤要么都做好,要么都别做。 2. ACID 事务都跟ACID相关,注意这里说的是“相关”,而不是一定都“满足”。全都严格满足,是“刚性事务”,部分满足或一…

240908-Python代码实现6种与DBGPT-Knowledge-API的交互方式

A. Chat模式 # import asyncio # from dbgpt.core import ModelRequest # from dbgpt.model.proxy import OllamaLLMClient# clientOllamaLLMClient()# print(asyncio.run(client.generate(ModelRequest._build("qwen2:1.5b", "你是谁?"))))imp…

Debug-027-el-tooltip组件的使用及注意事项

前言: 这两天,碰到这个饿了么的el-tooltip比较多。这个组件使用起来也挺简单的,常用于展示鼠标 hover 时的提示信息。但是有一些小点需要注意。这里不再机械化的介绍文档,不熟悉的话可以先看一下: https://element-pl…

这个隐藏功能,90%的人还不知道!可一键直达40+AI应用!含Kimi、腾讯元宝、秘塔AI等常用AI工具

大家好,我是程序员X小鹿,前互联网大厂程序员,自由职业2年,也一名 AIGC 爱好者,持续分享更多前沿的「AI 工具」和「AI副业玩法」,欢迎一起交流~ 又是被粉丝感动的一天。 昨天一位读者加到我,是一…

基于Java+SpringBoot+Vue+MySQL的美容美发管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 基于SpringBootVue的美容美发管理系统【附源码文档】、前后…

音频创作无界限:全球热门剪辑软件深度评测

如果是一个音乐爱好者肯定会有过想要录制自己音乐作品的想法吧。这个操作放在早些年可能有些难度,但是现在是科技告诉发展的时代,互联网上有不少在线音频剪辑工具可以供我们选择。这次我们就一起来探讨有什么适合音频剪辑的工具。 1.福昕音频剪辑 链接…

3.C_数据结构_栈

概述 什么是栈: 栈又称堆栈,是限定在一段进行插入和删除操作的线性表。具有后进先出(LIFO)的特点。 相关名词: 栈顶:允许操作的一端栈底:不允许操作的一端空栈:没有元素的栈 栈的作用: 可…