企业大模型落地的“最后一公里”攻略

news2024/11/24 17:37:28

一、大模型落地的行业现状与前景

大模型在多个行业展现出强大的应用潜力。在金融行业,沉淀了大量高质量数据,各金融平台用户数以亿计,交易数据浩如烟海。利用大模型分析处理这些数据,金融机构可以预测用户行为偏好,更高效、准确评估客户风险,实时监测交易和市场波动,及时制定策略。IDC 调研显示,超半数的金融机构计划在 2023 年投资生成式人工智能技术。

在科技领域,商汤人工智能大装置为大模型企业提供源源不断的算力。国内已有超过 19 个大语言模型研发厂商,其中 15 家厂商的模型产品已经通过备案。如百度 “文心一言” 用户规模已突破 1 亿,成为国内首个向消费端探索付费模式的大模型产品。

在体育行业,商汤 “日日新” 大模型深度应用于巴黎奥运会。通过多相机视觉动作捕捉系统,实现智能化高光时刻抓取、精彩瞬间生成等功能,辅助运动员表现能力分析。

在医疗行业,大模型也在探索赋能病历书写、疾病特征抽取、辅助诊疗方案生成等方面,提升医生的工作效率和医疗质量。

大模型在不同行业的增长态势迅猛,应用领域不断拓展。其发展前景广阔,具有无限的产业应用前景,能影响各个行业。随着技术的不断进步和跨行业融合的加深,大模型将在更多领域展现其独特的价值和能力。

二、落地面临的主要难题

(一)高昂的成本与资源需求

大模型的训练和部署往往需要投入巨额资金。训练一个高质量的大模型,不仅需要强大的算力支持,还需要海量的数据进行喂养。例如,像 GPT-4 这样的大型语言模型,其训练成本可能高达数千万美元。此外,对算力的要求极高,需要大量的高性能 GPU 或 TPU 等硬件设备,同时数据的存储和处理也需要消耗大量的资源。这对于许多企业来说,是一个巨大的负担。

(二)数据安全与隐私保护

大模型在处理海量数据时,数据安全和隐私保护成为了严峻的挑战。一方面,大量的敏感信息可能被包含在训练数据中,如个人身份信息、医疗记录等,一旦泄露,将造成严重后果。另一方面,模型在生成回答时,也可能无意泄露用户的隐私信息。例如,通过对用户提问的分析,推测出用户的一些私密情况。

(三)模型的准确性与幻觉问题

大模型在输出结果时,准确性难以保证,常常出现幻觉现象。由于大模型是基于概率生成答案,有时会给出看似合理但实际上错误的回答。比如在一些专业领域的问题上,可能会因为训练数据的偏差或不足,导致答案不准确。而且大模型可能会过度自信地给出没有依据的结论,让用户产生误解。

(四)技术与现有系统的兼容

将大模型技术融入企业现有的成熟系统并非易事。现有系统可能具有特定的架构和工作流程,而大模型的引入可能需要对这些进行重大调整。比如,在企业的信息管理系统中,大模型的接口和数据格式可能与现有系统不匹配,导致集成困难。此外,现有系统的性能和稳定性也可能受到影响。

(五)人才短缺与培养难度

大模型领域专业人才极为稀缺,培养难度也较大。既需要掌握深度学习、自然语言处理等技术,又要对特定行业的知识有深入了解。目前,高校和培训机构的相关课程还不够完善,导致人才供应远远无法满足市场需求。培养一个成熟的大模型专业人才,通常需要较长时间和丰富的实践经验。

三、企业的实践探索与成功案例

(一)私有化大模型定制服务

在当今竞争激烈的市场环境中,越来越多的企业开始探索私有化大模型定制服务,以满足自身特定的业务需求。例如,一些大型科技公司将他们的大模型知识库转变为机器学习的训练模型,通过建立私有化知识库,存储企业数据和信息,并将其转换为大型模型,供机器学习系统学习。私有化大模型定制服务具有诸多优势,由于其知识库是私有化的,在安全方面更有保障,能够突破现有的知识库限制,为企业提供更高效的自定义服务。

北京灵奥科技作为一家快速成长的初创企业,致力于推动生成式 AI 技术的普及。他们提供了帮助构建 AI Agent 的 SaaS 平台,先后推出了 Vanus Connect、Vanus AI 和 VanChat 三款 SaaS 产品,累计服务全球 30,000 + 用户。Vanus Connect 可以连接企业不同的数据源,实时感知企业业务事件的变化,并推送给神经中枢,然后接收神经中枢的指令去做执行。Vanus AI 结合知识库和大模型,帮助企业做业务的决策。通过私有化大模型定制服务,企业能够将大模型优势和业务数据无缝结合,加速企业的商业成功。

(二)国产化训练和部署

随着国内技术的不断发展,越来越多的企业开始尝试在国产化基础设施上进行大模型训练和部署。例如,摩尔线程与滴普科技携手,实现了国产大模型训练的重要突破。基于摩尔线程的夸娥千卡智算集群,滴普科技顺利完成了 700 亿参数的 LLaMA2 大语言模型的预训练测试,整个训练过程耗时 77 小时,全程无故障连续运行,集群训练的稳定性高达 100%,训练效率和兼容性也均达到了预期目标。

大模型国产化适配也在不断推进,如基于昇腾 910 使用 ChatGLM - 6B 进行模型训练。通过环境搭建、数据准备及数据格式转换、模型准备及模型格式转换、代码准备和网络配置等步骤,实现了在国产化硬件上的大模型训练。这为企业在国产化基础设施上进行大模型训练和部署提供了可行的方案。

(三)跨模态大模型应用

企业在跨模态大模型方面也进行了创新应用。百度吴甜指出,由 AI 深度学习带来的文生图系统可为大众用户提供一个零门槛绘画创作平台,让每个人都能展现个性化格调,享受艺术创作的乐趣。AI 在预训练过程中同时学习模态间和模态内的多种关联性,提升 “图像” 和 “文本” 跨模态语义匹配效果,并通过渐进式扩散模型,不断提升文本生成图像的效果。

此外,北京发布首批 10 个行业大模型典型应用案例,其中包括由中国科学院自动化研究所和中铁建设集团有限公司共同开发的面向建筑领域多模态行业大模型示范应用。基于 “紫东太初” 多模态大模型和跨模态通用人工智能平台,联合研发建筑工程全闭环智能应用系统,形成项目地图索引、风险快速传达、自动回复等功能,赋能工程方案设计、技术文件审核等多个阶段场景,大大提升建筑行业智能化水平。

四、促进落地的应对策略

(一)国家层面的顶层设计

国家在推动大模型产业发展方面应发挥统筹规划的引领作用。首先,制定明确的产业发展战略,确定大模型在经济社会发展中的重点应用领域和长远目标。加大对大模型基础研究的投入,支持科研机构和高校开展前沿技术探索,培养高端人才。同时,建立健全相关法律法规和政策体系,规范大模型的开发和应用,保障数据安全和隐私保护。设立专项基金,鼓励企业和科研机构参与大模型技术创新,促进产学研深度融合。

(二)企业层面的创新与合作

企业应充分发挥自身的技术优势和市场敏锐度,推动大模型落地。加强内部研发投入,培养专业的大模型团队,不断优化算法和模型架构。积极开展跨行业合作,与产业链上下游企业共同探索大模型的应用场景和商业模式。例如,互联网企业与传统制造业合作,将大模型应用于生产流程优化和产品创新。此外,企业还应注重用户需求的挖掘,以市场为导向进行创新,提升大模型产品和服务的竞争力。

(三)构建应用层和工具层

构建丰富且实用的应用层和工具层是提升大模型交付效果的关键。在应用层,针对不同行业和用户需求,开发多样化的应用程序和解决方案,如智能客服、智能营销等。工具层则应提供便捷的开发工具和接口,降低使用门槛,方便开发者快速集成和定制大模型。同时,不断优化应用层和工具层的性能,提高响应速度和准确性,为用户带来更好的体验。

(四)平台的角色与责任

平台在大模型落地中扮演着重要的角色。一方面,要做到 “知止”,即明确自身的业务边界,不盲目扩张和追求短期利益。严格审核入驻的大模型产品和服务,确保其质量和安全性。另一方面,要 “让利” 给开发者和用户,提供优惠的政策和资源支持,促进大模型生态的繁荣发展。建立公平公正的评价体系,激励优质的大模型应用脱颖而出,推动行业健康发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2114824.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CMake/C++:一个日志库spdlog

项目仓库 GitHub - gabime/spdlog: Fast C logging library.Fast C logging library. Contribute to gabime/spdlog development by creating an account on GitHub.https://github.com/gabime/spdlog 知乎参考贴 https://zhuanlan.zhihu.com/p/674073158 先将仓库clone一下 然…

LabVIEW如何确保采集卡稳定运行

在LabVIEW开发中,如何确保硬件采集卡稳定运行,特别是长期采集电压信号,是系统稳定性的重要考虑因素。用户在使用采集卡时,可能需要频繁进行开始、停止和重新采集的操作,这对硬件和软件提出了高要求。下面介绍实现长期稳…

大数据开发职场:理性分析拖延

你有没有遇到过这样的情况:周四晚上,室友兴高采烈地邀请你去看最新上映的大片,而你正在奋战一份截止日期为下周一的化学作业。这个看似简单的选择,实际上隐藏着一个深刻的人生哲学问题。 目录 5秒钟抓住你的注意力深入探讨&#x…

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准…

连接池的设计与实现-0基础Go语言版

为什么需要连接池? 假设现在没有连接池,每次建立一个新的连接,都需要消耗一定的时间开销(必要时会使用TCP三次握手)。因此,连接的创建和销毁是一件非常昂贵的操作。尤其是在高并发场景下,可能会…

一场 Kafka CRC 异常引发的血案

一、问题概述 客户的生产环境突然在近期间歇式的收到了Kafka CRC的相关异常,异常内容如下 Record batch for partition skywalking-traces-0 at offset 292107075 is invalid, cause: Record is corrupt (stored crc 1016021496, compute crc 1981017560) 报错…

时间同步服务

多主机协作工作时,各个主机的时间同步很重要,时间不一致会造成很多重要应用的故障,如:加密协 议,日志,集群等。 利用NTP(Network Time Protocol) 协议使网络中的各个计算机时间达到…

网络安全运维培训一般多少钱

在当今数字化时代,网络安全已成为企业和个人关注的焦点。而网络安全运维作为保障网络安全的重要环节,其专业人才的需求也日益增长。许多人都对网络安全运维培训感兴趣,那么,网络安全运维培训一般多少钱呢? 一、影响网络安全运维培…

RISC-V (十一)软件定时器

主要的思想:硬件定时器是由硬件的定时器设备触发的。软件定时器在硬件定时器的基础上由软件控制实现多个定时器的效果。主要的思路是在trap_handler函数中加入软件代码,使其在设定的时间点 去执行想要执行的功能函数。 定时器的分类 硬件定时器&#xf…

Linux 复制目录和文件

概述 cp 命令主要可用于复制文件或目录。 cp 是单词 copy 的缩写。 语法 cp 命令的语法如下: cp [选项] source dest。即复制 source 文件到 dest。 该命令支持的选项有: 选项说明-r递归复制整个文件夹-i若目标文件已经存在,则会询问是否覆盖-p保留源文件或目录的所有属性…

安卓玩机工具-----ADB方式的刷机玩机工具“秋之盒”’ 测试各项功能预览

秋之盒 安卓玩机工具-秋之盒是一款ADB刷机工具箱,基于谷歌ADB的一款绿色安装,具备了海量扩展模块,支持ADB刷机救砖、一键激活黑域、adb指令修复等功能,是一款开源、免费、易用的手机刷机工具! 并且是一款开源、免费、易用的图形化…

OneHotEncoder一个不太合理的地方

OneHotEncoder,在Xtrain上fit,在Xtest上transform 如果遇到某个值出现在Xtest,而没有在Xtrain出现过时,会抛出如下错误: OneHotEncoder Found unknown categories [xxx] in column xx during transform OneHotEncoder …

简单实用的php全新实物商城系统

免费开源电商系统,提供灵活的扩展特性、高度自动化与智能化、创新的管理模式和强大的自定义模块,让电商用户零成本拥有安全、高效、专业的移动商城。 代码是全新实物商城系统源码版。 代码下载

Prometheus 服务监控

官网:https://prometheus.io Prometheus 是什么 Prometheus 是一个开源的系统监控和报警工具,专注于记录和存储时间序列数据(time-series data)。它最初由 SoundCloud 开发,并已成为 CNCF(云原生计算基金会…

基于EPS32C3电脑远程开机模块设计

基于EPS32C3电脑远程开机模块设计 前言 缘起,手头资料太多了,所以想组一台NAS放在家里存储数据。在咸鱼淘了一套J3160主板加机箱,加上几块硬盘组建NAS。 对于NAS,我的需求是不用的时候关机(节省功耗),要用的时候开机…

每日OJ_牛客_骆驼命名法(递归深搜)

目录 牛客_骆驼命名法(简单模拟) 解析代码 牛客_骆驼命名法(简单模拟) 骆驼命名法__牛客网 解析代码 首先一个字符一个字符的读取内容: 遇到 _ 就直接跳过。如果上一个字符是 _ 则下一个字符转大写字母。 #inclu…

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒…

LEAN 类型理论之注解(Annotations of LEAN Type Theory)-- 小结(Summary)

在证明LEAN类型理论的属性前,先对LEAN类型理论所定义的所有推演规则做一个小结,以便后面推导LEAN类型理论的属性。各部分的注解请查看对应文章。 注:这些都是在《LEAN类型理论》中截取出来的,具体内容,读者可参考该论…

ApacheKafka中的设计

文章目录 1、介绍1_Kafka&MQ场景2_Kafka 架构剖析3_分区&日志4_生产者&消费者组5_核心概念总结6_顺写&mmap7_Kafka的数据存储形式 2、Kafka的数据同步机制1_高水位(High Watermark)2_LEO3_高水位更新机制4_副本同步机制解析5_消息丢失问…

Redis典型应用 - 分布式锁

文章目录 目录 文章目录 1. 什么是分布式锁 2. 分布式锁的基本实现 3. 引入过期时间 4. 引入校验Id 5. 引入 watch dog(看门狗) 6. 引入redlock算法 工作原理 Redlock的优点: 总结 1. 什么是分布式锁 在一个分布式系统中,也可能会出现多个节点访问一个共…