一文讲懂扩散模型

news2024/11/25 1:01:41

一文讲懂扩散模型

在这里插入图片描述

扩散模型(Diffusion Models, DM)是近年来在计算机视觉、自然语言处理等领域取得显著进展的一种生成模型。其思想根源可以追溯到非平衡热力学,通过模拟数据的扩散和去噪过程来生成新的样本。以下将详细阐述扩散模型的基本原理、处理过程以及应用。

一、扩散模型的基本原理

扩散模型的核心思想分为两个主要过程:前向扩散过程(加噪过程)和逆向扩散过程(去噪过程)。

  1. 前向扩散过程

    • 在这个过程中,模型从原始数据(如图像)开始,逐步向其中添加高斯噪声,直到数据完全变成纯高斯噪声。这个过程是预先定义的,每一步添加的噪声量由方差调度(Variance Schedule)控制。
    • 数学上,这一过程可以表示为: x t = 1 − β t x t − 1 + β t ϵ x_t = \sqrt{1 - \beta_t}x_{t-1} + \sqrt{\beta_t}\epsilon xt=1βt xt1+βt ϵ,其中 x t x_t xt t t t时刻的数据, β t \beta_t βt是控制噪声量的参数, ϵ \epsilon ϵ是从标准正态分布中采样的噪声。
  2. 逆向扩散过程

    • 逆向过程则是前向过程的逆操作,即从纯高斯噪声开始,逐步去除噪声,最终还原出原始数据。这个过程通常通过一个参数化的神经网络(如噪声预测器)来实现,该网络学习如何预测并去除每一步加入的噪声。
    • 数学上,逆向过程可以表示为条件高斯分布: p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t ) , Σ θ ( x t , t ) ) p_\theta(x_{t-1}|x_t) = \mathcal{N}(x_{t-1};\mu_\theta(x_t, t), \Sigma_\theta(x_t, t)) pθ(xt1xt)=N(xt1;μθ(xt,t),Σθ(xt,t)),其中 μ θ \mu_\theta μθ Σ θ \Sigma_\theta Σθ是由神经网络预测的均值和方差。
二、扩散模型的处理过程

扩散模型的处理过程可以分为训练阶段和推理(生成)阶段。

  1. 训练阶段

    • 在训练阶段,模型通过前向扩散过程得到一系列加噪后的数据样本,并使用这些样本及其对应的原始数据来训练噪声预测器。训练目标是最小化预测噪声与实际噪声之间的均方误差(MSE)。
    • 通过变分推断(Variational Inference)技术,模型学习如何逆转前向扩散过程,即从加噪数据中恢复出原始数据。
  2. 推理(生成)阶段

    • 在推理阶段,模型从标准高斯分布中随机采样一个噪声向量,然后通过逆向扩散过程逐步去除噪声,最终生成一张清晰的图像或其他类型的数据样本。
    • 推理过程需要多次迭代,每次迭代都使用噪声预测器来预测并去除当前数据中的噪声,直到生成满足要求的数据样本。
三、扩散模型的应用

扩散模型因其强大的生成能力,在多个领域得到了广泛应用,包括但不限于:

  1. 图像生成

    • 扩散模型可以生成高质量、多样化的图像样本,在艺术创作、图像编辑等领域具有广泛应用前景。
    • 代表性的模型如OpenAI的DALL-E 2和Stability.ai的Stable Diffusion等,已经展示了令人惊叹的图像生成能力。
  2. 视频生成

    • 扩散模型也被应用于视频生成领域,通过模拟视频帧之间的连续性和复杂性来生成高质量的视频样本。
    • 灵活扩散模型(FDM)等研究成果表明,扩散模型在视频生成方面具有巨大潜力。
  3. 自然语言处理

    • 扩散模型的思想也被引入到自然语言处理领域,用于文本生成等任务。通过模拟文本数据的扩散和去噪过程来生成流畅的文本样本。
  4. 其他领域

    • 扩散模型还被应用于波形生成、分子图建模、时间序列建模等多个领域,展示了其广泛的应用前景和强大的生成能力。
四、代码实战

以下是一个基于Python和PyTorch的扩散模型(Diffusion Model)的简单代码实战案例。这个案例将展示如何使用扩散模型来生成手写数字图像,这里我们使用的是MNIST数据集。

首先,确保你已经安装了必要的库:

pip install torch torchvision

接下来是代码部分:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt

# 超参数设置
batch_size = 128
num_epochs = 50
learning_rate = 1e-3
num_steps = 1000  # 扩散过程的步数
beta_start = 0.0001
beta_end = 0.02

# 定义beta调度(线性调度)
betas = np.linspace(beta_start, beta_end, num_steps, dtype=np.float32)
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas)

# 数据加载和预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

# 定义简单的神经网络(噪声预测器)
class SimpleNN(nn.Module):
    def __init__(self):
        super(SimpleNN, self).__init__()
        self.fc1 = nn.Linear(784, 1000)
        self.fc2 = nn.Linear(1000, 1000)
        self.fc3 = nn.Linear(1000, 784)
        self.relu = nn.ReLU()

    def forward(self, x, t):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x  # 输出预测的噪声

# 初始化模型、优化器和损失函数
model = SimpleNN().to('cuda')
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()

# 训练过程
for epoch in range(num_epochs):
    model.train()
    for batch_idx, (data, _) in enumerate(train_loader):
        data = data.view(data.size(0), -1).to('cuda')
        # 随机时间步t
        t = torch.randint(0, num_steps, (data.size(0),), device='cuda')
        # 前向扩散过程(只计算一次,实际中可能需要存储所有时间步的数据)
        noise = torch.randn_like(data).to('cuda')
        x_t = torch.sqrt(alphas_cumprod[t]) * data + torch.sqrt(1 - alphas_cumprod[t]) * noise
        # 预测噪声
        pred_noise = model(x_t, t.float().unsqueeze(1))
        # 计算损失(与真实噪声的均方误差)
        loss = criterion(pred_noise, noise)
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if batch_idx % 100 == 0:
            print(f'Epoch {epoch+1}/{num_epochs}, Batch {batch_idx}/{len(train_loader)}, Loss: {loss.item()}')

# 生成过程(推理)
model.eval()
with torch.no_grad():
    # 从标准高斯分布中采样初始噪声
    x = torch.randn(16, 784, device='cuda')  # 生成16张图像
    for step in range(num_steps, 0, -1):
        t = (torch.ones(16) * (step - 1)).long().to('cuda')  # 当前时间步
        # 预测噪声(实际中需要使用更复杂的策略来逐渐减小噪声)
        pred_noise = model(x, t.float().unsqueeze(1))
        # 逆向扩散步骤(这里简化了方差的处理)
        beta_t = betas[step - 1]
        alpha_t = alphas[step - 1]
        x = (x - torch.sqrt(1 - alphas_cumprod[step - 1]) * pred_noise) / torch.sqrt(alphas_cumprod[step - 1])
        # 添加适量的噪声以保持生成过程的随机性(可选)
        # x += torch.sqrt(beta_t) * torch.randn_like(x)

    # 将生成的图像转换回像素值范围并可视化
    x = (x + 1) / 2.0  # 因为数据是归一化的,所以需要还原
    x = x.cpu().numpy()
    fig, axes = plt.subplots(4, 4, figsize=(8, 8))
    for i, ax in enumerate(axes.flatten()):
        ax.imshow(x[i].reshape(28, 28), cmap='gray')
        ax.axis('off')
    plt.show()

注意

  1. 这个代码是一个简化的示例,实际的扩散模型实现可能会更复杂,包括更复杂的网络结构、更精细的调度策略以及更高效的采样方法。
  2. 在生成过程中,我简化了逆向扩散步骤中的方差处理,并且没有添加额外的噪声。在实际应用中,可能需要更仔细地处理这些细节以获得更好的生成结果。
  3. 由于计算资源和时间的限制,这个示例只训练了很少的次数,并且使用了简单的网络结构。在实际应用中,可能需要更多的训练时间和更复杂的网络来获得高质量的生成图像。
  4. 代码中使用了CUDA来加速计算,确保你的环境支持CUDA并且有可用的GPU。如果没有GPU,可以将代码中的.to('cuda')替换为.to('cpu')来在CPU上运行。
总结

扩散模型作为一种新兴的生成模型,通过模拟数据的扩散和去噪过程来生成新的样本。其基本原理简单明了但背后蕴含着丰富的数学原理和优化技巧。随着研究的不断深入和应用场景的不断拓展,扩散模型有望在更多领域发挥重要作用并推动相关技术的发展进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2114727.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

发动机制造5G智能工厂工业物联数字孪生平台,推进制造业数字化转型

发动机制造作为高端制造业的核心领域之一,正积极探索并引领这一变革。其中,发动机制造5G智能工厂物联数字孪生平台的兴起,不仅为发动机制造业注入了新的活力,也为整个制造业的数字化转型树立了新的标杆。发动机制造5G智能工厂物联…

Linux Centos 7网络配置

本步骤基于Centos 7,使用的虚拟机是VMware Workstation Pro,最终可实现虚拟机与外网互通。如为其他发行版本的linux,可能会有差异。 1、检查外网访问状态 ping www.baidu.com 2、查看网卡配置信息 ip addr 3、配置网卡 cd /etc/sysconfig…

致远个性化之--发起流程页面,去掉【查看流程】按钮

需求 近期在做的项目中,遇到一个需求,想把发起流程页面中的【查看流程】按钮去掉,只让员工预测流程,知道自己的事项流程走向,不让看全局流程图。包含PC端和移动端,以及微协同端。 如下图效果示例&#xff1…

SVN下载安装使用方法

目录 🌕SVN是什么?🌙SVN跟Git比的优势🌙SVN的用处 🌕下载安装使用方法 🌕🌙⭐ 🌕SVN是什么? 代码版本管理工具 它能记住你每次的修改 查看所有的修改记录 恢复到任何历…

如何读.Net Framework 的源码?

.Net Framework的源码可以从这里下载 Download 也可以在线直接浏览 https://referencesource.microsoft.com 这里我们以System.IO.Directory.CreateDirectory函数为例,来说明如何去读.Net Framework的源码。 在ReferenceSource在线界面的搜索框里输入Directory.Cr…

C语言深度剖析--不定期更新的第四弹

哈哈哈哈哈哈,今天一天两更! void关键字 void关键字不能用来定义变量,原因是void本身就被编译器解释为空类型,编译器强制地不允许定义变量 定义变量的本质是:开辟空间 而void 作为空类型,理论上不应该开…

NLP自然语言处理学习过程中知识点总结

OOV是什么 OOV 是 “Out Of Vocabulary”的缩写,意思是 “超出词汇表” 或 “未登录词汇”。 在自然语言处理 (NLP) 中,OOV 指的是模型训练时没有见过的词语或词汇。通常,语言模型会为其训练数据中未出现的词汇分配一个特殊的标记。OOV 词汇…

【国赛急救包】数模国赛查重规则及降重技巧

国赛已经快接近尾声了,各位宝宝论文写得怎么样啦~ 今天为大家分享关于国赛查重的一些规则,以及降重技巧!快收藏起来吧~ 1. 国赛查重要求及如何查重 • 数学建模国赛的查重除了知网数据库以外,更重要的是自建库的查重比对&#x…

14.1 为什么说k8s中监控更复杂了

本节重点介绍 : k8s中监控变得复杂了,挑战如下 挑战1: 监控的目标种类多挑战2: 监控的目标数量多挑战3: 对象的变更和扩缩特别频繁挑战4: 监控对象访问权限问题 k8s架构图 k8s中监控变得复杂了,挑战如下 挑战1: 监控的目标种类多 对象举例 podnodese…

【kubernetes】配置管理中心Configmap运用

一,介绍 Configmap(简写 cm)是k8s中的资源对象,用于保存非机密性的配置的,数据可以用key/value键值对的形式保存,也可通过文件的形式保存。 【局限性】:在ConfigMap不是用来保存大量数据的&am…

Windows下Python和PyCharm的应用(二)__快捷键方式的设定

前言 程序写久了,难免会形成自己的编程习惯。比如对某一套快捷键的使用,已经形成了肌肉记忆。 为了方便快捷键的使用,可以在PyCharm中设置自己喜欢的快捷键。 我比较习惯于微软Visual Studio的快捷键设置。(因为早些年VC开发用的…

模具要不要建设3D打印中心

随着3D打印技术的日益成熟与广泛应用,模具企业迎来了自建3D打印中心的热潮。这一举措不仅为企业带来了前所未有的发展机遇,同时也伴随着一系列需要克服的挑战,如何看待企业引进增材制造,小编为您全面分析。 机遇篇: 加…

win11如何录屏

在 Win11 中录屏可以使用系统自带的工具和一些第三方应用。以下是几种方法: 方法一:使用 Xbox Game Bar 1. 打开 Xbox Game Bar - 按 Win G 组合键打开 Xbox Game Bar。 2. 开始录制 - 在显示的界面中,点击“录制”按钮(…

Linux之nginx部署项目【前后端分离】(外加redis安装)

nginx安装和访问 1.使用apt安装Nginx apt install -y nginx 用whereis nginx找到和nginx相关目录 nginx目录结构 /usr/sbin/nginx 服务文件 /etc/nginx 配置目录 /usr/share/nginx/html 发部项目 服务名: nginx.service ps -ef | grep nginx apt install -y net-tools …

【Excel 表打印基本操作】

表格打印 1.设置缩放打印1.1 命令启动器、命令组1.2 一页纸打印1.3 自由设置打印缩放比例 2.跨页打印标题3.打印选定区域3.1 打印前/后n行3.2 打印多个表格区域3.3 只打印图表3.4 不打印照片 4.设置分页打印4.1 手动分页:分页预览,分页符a) 手动插入分页…

x86的Docker环境下载ARM版容器镜像

文章目录 应用场景下载方法 应用场景 内网是信创ARM环境,需要从外网下载镜像,但外网的docker环境是X86环境,此时需要在外网docker环境下载ARM版容器镜像。 下载方法 # 如何找sha256参见下面的截图。 # hub.docker网站找到镜像后&#xff0…

插件maven-search:Maven导入依赖时,使用插件maven-search拷贝需要的依赖的GAV

然后粘贴&#xff1a; <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.26</version> </dependency>

0基础学习爬虫系列:程序打包部署

1.目标 将已经写好的python代码&#xff0c;打包独立部署或运营。 2. 环境准备 1&#xff09;通义千问 &#xff1a;https://tongyi.aliyun.com/qianwen 2&#xff09;0基础学习爬虫系列–网页内容爬取&#xff1a;https://blog.csdn.net/qq_36918149/article/details/14199…

【Python篇】PyQt5 超详细教程——由入门到精通(终篇)

文章目录 PyQt5超详细教程前言第9部分&#xff1a;菜单栏、工具栏与状态栏9.1 什么是菜单栏、工具栏和状态栏9.2 创建一个简单的菜单栏示例 1&#xff1a;创建带有菜单栏的应用程序代码详解&#xff1a; 9.3 创建工具栏示例 2&#xff1a;创建带有工具栏的应用程序代码详解&…

如何在mac上玩使命召唤手游?苹果电脑好玩的第一人称射击游戏推荐

《使命召唤4&#xff1a;现代战争》&#xff08;Call of Duty 4: Modern Warfare&#xff09;是由Infinity Ward开发并于2007年发行的第一人称射击游戏。该游戏是《使命召唤》系列的第四部作品&#xff0c;是一款非常受欢迎的游戏之一&#xff0c;《使命召唤4&#xff1a;现代战…