1 命名空间
在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存
在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,
以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。
#include <stdio.h>
#include <stdlib.h>
int rand = 10;
// C语言没办法解决类似这样的命名冲突问题,所以C++提出了namespace来解决
int main()
{
printf("%d\n", rand);
return 0;
}
// 编译后后报错:error C2365: “rand”: 重定义;以前的定义是“函数”
1.1 命名空间定义
定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{}
中即为命名空间的成员。
// ADD是命名空间的名字,一般开发中是用项目名字做命名空间名。
// 1. 正常的命名空间定义
namespace ADD
{
// 命名空间中可以定义变量/函数/类型
int rand = 10;
int Add(int left, int right)
{
return left + right;
}
struct Node
{
struct Node* next;
int val;
};
}
1.1.1 命名空间可以嵌套
namespace N1
{
Add(int a,int b)
{
return a+b;
}
namespace N2
{
int c;
int d;
int Sub(int left, int right)
{
return left - right;
}
}
}
1.1.2 同一个工程中允许多个相同名称的命名空间。
namespace N1
{
Add(int a,int b)
{
return a+b;
}
namespace N2
{
int c;
int d;
int Sub(int left, int right)
{
return left - right;
}
}
}
namespace N1
{
int Mul(int left, int right)
{
return left * right;
}
}
最后相同命名的命名空间都会被编译合成一个命名空间。
1.2 命名空间的使用
假设有一个命名空间
namespace N1 {
int a = 1;
int b = 2;
int ADD(int left, int right)
{
return right + left;
}
}
直接调用
int main()
{
printf("%d", a);
return 0;
}
编译报错:error C2065: “a”: 未声明的标识符
3种调用方法
1.2.1 加命名空间名称及作用域限定符
int main()
{
printf("%d", N1::a);
return 0;
}
1.2.2 使用using将命名空间中某个成员引入
#include <iostream>
using namespace std;
namespace N1 {
int a = 1;
int b = 2;
int ADD(int left, int right)
{
return right + left;
}
}
using N1::a;
int main()
{
printf("%d", a);
return 0;
}
1.2.3 使用using namespace 命名空间名称引入
#include <iostream>
using namespace std;
namespace N1 {
int a = 1;
int b = 2;
int ADD(int left, int right)
{
return right + left;
}
}
using namespace N1;
int main()
{
printf("%d", a);
return 0;
}
2 缺省参数
2.1 概念
缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。
void Func(int a = 0)
{
cout<<a<<endl;
}
int main()
{
Func(); // 没有传参时,使用参数的默认值
Func(10); // 传参时,使用指定的实参
return 0;
}
2.2 分类
2.2.1 全缺省
void Func(int a = 10, int b = 20, int c = 30)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}
2.2.2 半缺省(部分缺省)
void Func(int a, int b = 10, int c = 20)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}
1. 半缺省参数必须从右往左依次来给出,不能间隔着给
2. 缺省参数不能在函数声明和定义中同时出现3. 缺省值必须是常量或者全局变量
4. C语言不支持(编译器不支持)
//a.h
void Func(int a = 10);
// a.cpp
void Func(int a = 20)
{}
// 注意:如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该
用那个缺省值。
3 函数重载
3.1 分类
函数重载可总结为:函数名相同但参数个数不同,参数个数相同或者参数类型不同,参数个数相同参数类型相同但参数前后顺序不同都可构为函数重载。但仅仅函数返回值不同不能构成重载。
#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{
cout << "int Add(int left, int right)" << endl;
return left + right;
}
double Add(double left, double right)
{
cout << "double Add(double left, double right)" << endl;
return left + right;
}
// 2、参数个数不同
void f()
{
cout << "f()" << endl;
}
void f(int a)
{
cout << "f(int a)" << endl;
}
// 3、参数类型顺序不同
void f(int a, char b)
{
cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
cout << "f(char b, int a)" << endl;
}
int main()
{
Add(10, 20);
Add(10.1, 20.2);
f();
f(10);
f(10, 'a');
f('a', 10);
return 0;
}
3.2 原理
在C/C++中,一个程序要运行起来,需要经历以下几个阶段:
预处理:头文件展开、宏替换、条件编译、删除注释,生成(.i)文件
编译:语法检查、编译成汇编代码 ->生成(.s)文件
汇编:编译为二进制代码 ->(.o)文件链接:将生产的目标文件(.o)与链接库合并生成可执行程序
实际项目通常是由多个头文件和多个源文件构成,【当前a.cpp中调用了b.cpp中定义的Add函数时】,编译后链接前,a.o的目标文件中没有Add的函数地址,因为Add是在b.cpp中定义的,所以Add的地址在b.o中。链接器看到a.o调用Add,但是没有Add的地址,就会到b.o的符号表中找Add的地址。
这里每个编译器都有自己的函数名修饰规则。链接器会生成的不同的修饰后的函数名去.o文件中查符号表找到对应修饰函数名的地址。这也是C++为什么能构成函数重载的重要原因:相同函数名会编译生成被修饰过的不同函数名。
在Linux系统下
通过下面我们可以看出gcc的函数修饰后名字不变。而g++的函数修饰后变成【_Z+函数长度
+函数名+类型首字母】。
采用C语言编译器编译后结果
结论:在linux下,采用gcc编译完成后,函数名字的修饰没有发生改变。
采用C++编译器编译后结果
结论:在linux下,采用g++编译完成后,函数名字的修饰发生改变,编译器将函数参
数类型信息添加到修改后的名字中。
Windows下名字修饰规则
对比Linux会发现,windows下vs编译器对函数名字修饰规则相对复杂难懂,但道理都
是类似的。
通过这里就理解了C语言没办法支持重载,因为同名函数没办法区分。而C++是通过函数修
饰规则来区分,只要参数不同,修饰出来的名字就不一样,就支持了重载。
如果两个函数函数名和参数是一样的,返回值不同是不构成重载的,因为调用时编译器没办
法区分。
4 引用
4.1 概念
引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空
间,它和它引用的变量共用同一块内存空间。
4.2 定义规则
类型& 引用变量名(对象名) = 引用实体;
void TestRef()
{
int a = 10;
int& ra = a;//<====定义引用类型
printf("%p\n", &a);
printf("%p\n", &ra);
}
注意:引用类型必须和引用实体是同种类型的
4.3 引用特性
1. 引用在定义时必须初始化
2. 一个变量可以有多个引用
3. 引用一旦引用一个实体,再不能引用其他实体
void TestRef()
{
int a = 10;
// int& ra; // 该条语句编译时会出错
int& ra = a;
int& rra = a;
printf("%p %p %p\n", &a, &ra, &rra);
}
4.4 常引用
void TestConstRef()
{
const int a = 10;
//int& ra = a; // 该语句编译时会出错,a为常量
const int& ra = a;
// int& b = 10; // 该语句编译时会出错,b为常量
const int& b = 10;
double d = 12.34;
//int& rd = d; // 该语句编译时会出错,类型不同
const int& rd = d;
}
4.5 使用场景
1.做参数
void Swap(int& left, int& right)
{
int temp = left;
left = right;
right = temp;
}
2.做返回值
int& Count()
{
static int n = 0;
n++;
// ...
return n;
}
示例:
int& Add(int a, int b)
{
int c = a + b;
return c;
}
int main()
{
int& ret = Add(1, 2);
Add(3, 4);
cout << "Add(1, 2) is :"<< ret <<endl;
return 0;
}
注意:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用
引用返回,如果已经还给系统了,则必须使用传值返回。
4.6 传值、传引用效率比较
以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。
4.7 引用和指针的区别
在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。
引用和指针的不同点:
1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
2. 引用在定义时必须初始化,指针没有要求
3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体
4. 没有NULL引用,但有NULL指针
5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)
6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小7. 有多级指针,但是没有多级引用
8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
9. 引用比指针使用起来相对更安全
5 内联函数
5.1 概念
以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。
如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的
调用。(此处和C语言种的宏很类似)
5.2 特性
1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会
用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运
行效率。
2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建
议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不
是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为
《C++prime》第五版关于inline的建议:
3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址
了,链接就会找不到。
6 C++有哪些技术替代宏?
1. 常量定义 换用const enum
2. 短小函数定义 换用内联函数
7 auto
在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。
int TestAuto()
{
return 10;
}
int main()
{
int a = 10;
auto b = a;
auto c = 'a';
auto d = TestAuto();
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
cout << typeid(d).name() << endl;
//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
return 0;
}
【注意】
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。
8 范围for
对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围
void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for(auto& e : array)
e *= 2;
for(auto e : array)
cout << e << " ";
return 0;
}