关于大模型和AIGC的36条笔记和真话

news2024/12/23 18:45:56

img

行业到底有多卷?

最新统计,中国已有130多个大模型问世,在网信办备案的算法模型也超过70多家。BAT等互联网巨头悉数下场发布AI大模型,仅2023年就有超60家创业公司拿到融资,产品更是布满了基础层、模型层和应用层。新一代生成式AI,可能要回头看看上一代AI趟过的坑,不要行业自嗨,避免上一个冬天的轮回。在这个领域的从业者,更要清晰地看到行业的内卷和客户的痛点,别被大佬的鸡汤迷了眼。

1、现在有客户找到我们,说有20个场景,一个场景X万块?然后挨家询价,华为做不做?阿里做不做?百度做不做?要这么卷下去,最后都没有钱赚。

2、大家融到的钱,80%-90%给到了算力,这是现状。要知道,现在还只是训练,训练的成本是可控的,推理的成本是不可控的。

3、我们GPU有30000块,算力6000p,年底争取算力超12000p。数据方面,每个月有2万亿token清洗和标注完,年底会有10万亿的token。

4、目前看,行业还是缺少一些颠覆式的杀手级的应用,从而难以实现商业化的变现。

5、怎么能够在成本和效果之间,找到一个平衡点,这是比较难的地方。都用大模型,成本太高了。

6、再过一段时间,大家要比拼的是基础设施的优化能力。比如,网络优化能力,别人断时你不断,就能比别人多训练几次。

7、在算力紧张的情况下,我们在做一些前瞻性的技术尝试。大家可能都想不到,在我们大模型公司,做基础架构的同学,比做模型的同学要多。他们普遍的价格都还挺贵,也很难招。

8、大模型现在很尴尬,自身卖不上价格,最后都是卖云卖卡卖算力的赚钱了。

9、刚开始觉得模型还挺值钱的,现在又陷入到内卷了。前段时间碰到一个客户,BAT等都报价了。刚开始报价,还挺贵,1000多万。大家知道最后的成单价是多少?太卷了。

10、百亿参数的大模型,在某些特殊客户的认知里面,就是免费的。

来自一线的声音

人工智能领域的企业,耳根子应该时刻记得毛主席说的话,“从实践中来到实践中去”。脱下长袍马褂,走到田间地头,在客户身边才能得到最真实地反馈。现在AI领域的伪专家太多了,不如多听听来自一线的声音。

11、我们大概聊了150个客户。对于大模型本身的需求主要分为两类。一类是大模型本身文字上的需求,客户对大语言模型的要求是100%准确。另一种,是AI agent,函数调用、代码显示器、调用第三方工具。

12、我们在合作过程中,出现了一个冲突矛盾。客户会觉得,在内部决定部署之前,是不能把数据拿出来给你的。但如果没有这个数据,我们又怎么能训练出适合客户需求的模型呢?

13、我们在做项目的时候发现,用户是不愿意为大模型去买单的,他还是为你的应用去买单。有的客户会直接问,有了大模型,以前的一些智能中台、知识图谱就不需要了吗?最后发现,场景才是最核心的。

14、我们要找到一些性感的场景。有几个标准。第一,小切口。第二,跟大模型的优势相匹配。第三,让买单的决策用户有强感知。比如以前获取一些数据、结论或者服务,需要不同的流程,现在通过大模型,决策者在移动设备就能快速获取和完成。

15、大模型想做成功需要三件事:1)能不能拿到足够多的钱去买算力。2)能不能拿到足够多的数据。3)人才密度是不是够厚,不在数量多,而是有没有足够多的高质量的科学家。

16、现在我们遇到三类客户。一类是焦虑的客户,比如金融的客户因为竞对都在搞,于是也想搞,但他并不清楚自己的需求是什么?一类是希望降本的客户,客户的管理层认为,这主要是降本节流的问题,但模型到底节流了多少,不好评判具体的价值。最后一类是希望部署模型开源赚钱的客户,他是靠这个模型来创收的,这类客户付费是最爽快的。

ToC 还是 ToB?

据了解,GPT-4训练一次的成本约为6300万美元,需要1.8万亿巨量参数。中国目前发布的一些大模型,ToC方向还是互联网的免费模式。但从业者都清楚,大模型的开发和运行都需要消耗大量的成本,从而ToB的商业模式更容易良性运转。在商业化探索上,ToB还是ToC,一直是行业关注的问题。在闭门会中,我们反复听到了两个关键词:1)基因 2)越界。“你无法成为你所不是的”。

17、我们认为机会还是在tob垂直模型,核心点在数据和场景本身,这是最核心的。

18、我们自己也在思考,人工智能如何跟互联网、数字化等结合起来,怎么更好地将原来的场景做得更智能。

19、ToC还是ToB,坦率讲这跟大家的基因有关。我们做不到,不代表别人做不到。比如一些ToC的应用,都是一些00后10后的小朋友在玩,超出了我们年龄的认知。

20、Toc和Tob还是很不一样的。ToC对容错率相对较高。TOB则相反。举个例子,智能问答。准确率如何保证?像政府,都是有红线的。如何避免模型的幻觉,目前大家都在做相应的探索。

21、我们反而认为ToC赚钱比较容易。ToB有个问题,一个项目的历程时间比较长。客户批预算,再到立项,再到实施,钱的周期是很长的。

22、我觉得现在是机会太多,不要把资源分到你所不是的地方,做战略选择,这个很重要。

ToB 和 ToG 也很苦

23、B端最大的bug在于,最后做成了高级的人力外包。

24、所有的项目都是有周期的,所有的付款也是根据周期的节点来走的。不可能我无限制地帮你训练和优化一个模型。

25、AIGC创作这种,包容性比较强,可以有些错误。但到一些企业生产制造,对准确性的要求就很高了。往往我们从模型中挑一两个比较好case是比较容易的,但要它维持在较高的水平里面,没有比较差的case,这个还是蛮难的。

26、我们在一个经济发达的省份去做智能数字化政府项目的时候,我们推了超过5个场景,最后客户就认可了3个场景。接着,就对安全、对数据、对底层刨根问底。接着还会问,你们跟其他大模型的差异和优势是什么?最后,多方要坐下来,出一个评测体系。评测体系过了还要评性能。

用项目孵化产品和方案

27、用项目孵化产品,做完几个项目后,抽离出相应的技术方案。这套方案,大概率不是一个模型,而是大模型+小模型,最后是多个模型形成的综合解决方案。

28、最近一两年,可能是做创新、做产品的过程,现金的回收周期会相对长一些。

Agent

想象一下人工智能模仿人类的日常任务来处理大量人类的复杂社会行为。斯坦福大学的一篇名为《Generative Agents: Interactive Simulacra of Human Behavior,titled》的论文深入研究了记忆、反应和计划的AI Agent。AI Agent 被认为是OpenAI 发力的下一个方向。OpenAI 联合创始人在近期的活动上也说:“相比模型训练方法,OpenAI内部目前更关注Agent领域的变化,每当有新的AI Agents 论文出来的时候,内部都会很兴奋并且认真地讨论 ”。

29、我们总会把大模型想象成万能的,它能解决各种各样的问题?事实是这样的么?大模型只是大模型。

30、我们内部管AI,叫隐形的AI。在用户面前,我们不会强调是什么模型,参数有多少。我们对AI的定义,就是人的辅助。

31、绕开模型,绕开算力,可能接下来的机会就是Agent。

32、目前影响客户使用的最大的问题:投入产出比。一旦跟客户聊到最后,谈到项目预算的时候,如果只是纯文字相关,投入大几百万小几百万,客户就不太满意。另外,如果大模型使用AI agent 嵌入到实际的生产环境中,解决实际的问题,客户会非常愿意买单。

33、在大模型基础上,AI Agent具备记忆、规划和执行等能力,能力加强。我们这期投了60多个初创项目,其中20多个都是Agent。

34、中国和国外,ToC的产品,付费形态和产品形态,差别也特别大。近期,我们投了一些Agent的公司。

35、但是,现阶段AI Agent只是处于新的尝试阶段,距离通用智能还有一定差距。未来还需要解决单个AI Agent综合能力之外,多个AI Agent之间协作及情感(Emotion)等方面能力表现的突破。

36、大模型玩家,要保证自己能留在牌桌上,才有机会看到下半场新的东西出来。

人工智能\大模型入门学习大礼包》,可以关注工棕耗:AI技术星球
回🎀复:11即🉑️精准或取❕!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2112372.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

论文解读 | KDD2024 演化图上的森林矩阵快速计算

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 点击 阅读原文 观看作者直播讲解回放! 作者简介 孙浩鑫,复旦大学博士生,主要研究方向为大规模图上快速算法设计。 概述 森林矩阵在网络科学、观点动力学和机器学习相关应用中…

基于深度学习的气象图像分类【mobilenet+VGG16+swin_transfomer+PyQt5界面】

深度学习天气图像分类 文章目录 1 绪论1.1 研究背景1.2 国内外研究现状1.2.1 国内外研究现状1.2.2 国内外研究现状 2 相关理论基础2.1 Tensorflow框架2.2 卷积神经网络2.2.1 神经元与权值共享2.2.2 结构组成2.2.3反向传播算法 2.3 MobileNetV1网络2.4 VGG16网络2.5 Transformer…

tb-nightly库安装报错

使用pip安装(默认清华镜像)tb-nightly库报如下错误: 网上查阅资料,尝试了以下方式: 使用conda安装失败!使用pip install tb-nightly --index-url https://pypi.org/simple安装失败最后,换成阿…

[Linux]:进程(上)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 初识进程 1.1 进程的概念 在计算机世界中,进程是一个关键概念…

机器学习中的聚类艺术:探索数据的隐秘之美

一 什么是聚类 聚类是一种经典的无监督学习方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的类标记信息。聚类则是试图将数据集的样本划分为若干个互不相交的类簇&#xff…

Confluence8.5.14安装

一、Centos8、安装jdk11(略) 二、mysql数据库 1、mysql安装包下载: MySQL :: Download MySQL Community Server 2、安装: https://downloads.mysql.com/archives/get/p/23/file/mysql-8.0.37-1.el8.x86_64.rpm-bundle.tar tar -xvf mysql-8.0.37-1.el8.x86_64.rpm-bund…

浏览器剪贴板 API Clipboard API

在 Web 开发领域,Clipboard API 就是一个备受关注的新利器,它为我们提供了在网页中访问和操作剪贴板的能力,极大地丰富了用户交互体验。本文将深入探讨 Clipboard API 的使用方法和潜在应用场景。 一. 什么是 Clipboard API? Cl…

集合及映射

1、集合类图 1)ArrayList与LinkedList 区别 LinkedList 实现了双向队列的接口,对于数据的插入速度较快,只需要修改前后的指向即可;ArrayList对于特定位置插入数据,需要移动特定位置后面的数据,有额外开销 …

Windows 安装mysql 教程,mysql 多版本共存教程,傻瓜式安装教程

mysql 各版本官方下载地址:⬇ ⬇⬇⬇⬇⬇⬇⬇⬇⬇(点击下面链接前往)MySQL :: Download MySQL Community Server (Archived Versions)https://downloads.mysql.com/archives/community/ 首先我本地安装了 mysql8.0版本了,通过msi 进行安装的也就是傻瓜式…

SprinBoot+Vue高校网上缴费综合务系统的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质…

文心快码前端工程师观点分享:人机协同新模式的探索之路(三)

本系列视频来自百度工程效能部的前端研发经理杨经纬,她在由开源中国主办的“AI编程革新研发效能”OSC源创会杭州站105期线下沙龙活动上,从一款文心快码(Baidu Comate)前端工程师的角度,分享了关于智能研发工具本身的研…

AIGC是如何颠覆文旅行业的?

AI技术正在以前所未有的速度和规模,颠覆着各行各业的发展。在文旅行业,这种颠覆尤为显著。今天,我们深入探讨AIGC是如何颠覆文旅行业的。 传统的文旅内容创作方式,往往需要大量的人力、物力和财力投入。拍摄、录制、剪辑&#xf…

第二天旅游线路规划和预览

第二天:从克拉玛依市乌尔禾区到五彩滩,晚上住宿贾登峪; 规划结果见下图: 1、行程安排 根据上面的耗时情况,规划一天的行程安排如下: 1)早上7:30起床,吃完早饭&#xff0c…

微信小程序页面制作——本地生活(含代码)

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

基于ASP+ACCESS的教师信息管理系统

摘要 随着我国社会主义市场经济的发展和改革开放的不断深入,计算机的应用已遍及国民经济的各个领域,计算机来到我们的工作和生活中,改变着我们和周围的一切。在以前,学校用手工处理教师档案以及工资发放等繁多的工作和数据时&…

谷粒商城の缓存篇

文章目录 前言一、本地缓存和分布式缓存1.本地缓存2.分布式缓存 二、项目实战1.配置Redis2.整合业务代码2.1 缓存击穿2.2 缓存雪崩2.3 缓存穿透2.4 业务代码1.0版2.5 分布式锁1.0版2.6 分布式锁2.0版2.7 Spring Cache及缓存一致性问题2.7.1 Spring Cache2.7.2 缓存一致性问题2.…

[003].第3节.在Windows环境中搭建Redis(单机版)环境

我的后端学习大纲 我的Redis学习大纲 1.Redis下载: 1.中文2.英文 2.Windows下搭建Redis环境: 2.1.单机

[论文笔记]Making Large Language Models A Better Foundation For Dense Retrieval

引言 今天带来北京智源研究院(BAAI)团队带来的一篇关于如何微调LLM变成密集检索器的论文笔记——Making Large Language Models A Better Foundation For Dense Retrieval。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们&quo…

深入理解C语言中的POSIX定时器

引言 在Unix和类Unix系统中,定时器是一种常见的机制,用于在特定时间间隔后执行某些操作。POSIX定时器因其灵活性和功能丰富而被广泛采用。本文将深入探讨POSIX定时器的工作原理、内部机制、使用方法及其在实际开发中的应用。 POSIX定时器基础 POSIX定…

【视频讲解】Python贝叶斯卷积神经网络分类胸部X光图像数据集实例

全文链接:https://tecdat.cn/?p37604 分析师:Yuanchun Niu 在人工智能的诸多领域中,分类技术扮演着核心角色,其应用广泛而深远。无论是在金融风险评估、医疗诊断、安全监控还是日常的交互式服务中,有效的分类算法都是…