2024国赛数学建模-模拟火算法(MATLAB 实现)

news2024/11/15 7:03:48
  1. 模拟退火算法

1.1 算法原理 模拟退火算法的基本思想是从一给定解开始 ,从邻域 中随机产生另一个解 ,接受 Metropolis准则允许目标函数在 有限范围内变坏 ,它由一控制参数 t决定 ,其作用类似于物 理过程中的温度 T,对于控制参数的每一取值 ,算法持续进 行“产生 —判断 —接受或舍去 ”的迭代过程 ,对应着固体在 某一恒定温度下的趋于热平衡的过程 ,当控制参数逐渐减 小并趋于 0时 ,系统越来越趋于平衡态 ,最后系统状态对应于优化问题的全局最优解 ,该过程也称为冷却过程 ,由于固 体退火必须缓慢降温 ,才能使固体在每一温度下都达到热 平衡 ,最终趋于平衡状态 ,因此控制参数 t经缓慢衰减 ,才 能确保模拟退火算法最终优化问题的整体最优解。

  1. 2 算法具体步骤

(1)给定模型每一个参数变化范围 ,在这个范围内随 机选择一个初始模型 m0 ,并计算相应的目标函数值 E (m0 )。

(2)对当前模型进行扰动产生一个新模型 m,计算相应 的目标函数值 E (m) ,得到 ΔE = E (m) - E (m0 )。

(3)若 ΔE < 0,则新模型被接受 ;若 ΔE > 0,则新模型 m 按概率 P = exp ( -ΔE/T)进行接受 , T为温度。当模型被接 受时 ,置 m0 =m, E (m0 ) = E (m)。

(4)在温度 T下 ,重复一定次数的扰动和接受过程 ,即 重复步骤 (2)、(3)。

(5)缓慢降低温度 T。 

(6)重复步骤 (2)、(5) ,直至收敛条件满足为止。

算法的实质分两次循环 ,随机扰动产生新模型并计算 目标函数值 (或称能量 )的变化 ,决定是否被接受。由于算 法初始温度设计在高温条件 ,这使得 E增大的模型可能被 接受 ,因而能舍去局部极小值 ,通过缓慢地降低温度 ,算法 最终能收敛到全局最优点。

实验用例:用模拟退火算法解决如下 10 个城市的 TSP 问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出。 问题描述如下: 有若干个城市,任何两个城市之间的距离都是确定的,现要求一旅行商从某城市出发必须经过每一个城市且只在一个城市逗留一次,最后回到出发的城市,问如何事先确定一条最短的线路已保证其旅行的费用最少?),该问题最优解为 f_opt = 2.691。

编程实现 

用 MATLAB 实现模拟退火算法时,共编制了 5 个 m 文件,分别如下

  1. swap.m

function [ newpath , position ] = swap( oldpath , number )% 对 oldpath 进 行 互 换 操 作% number 为 产 生 的 新 路 径 的 个 数% position 为 对 应 newpath 互 换 的 位 置m = length( oldpath ) ; % 城 市 的 个 数newpath = zeros( number , m ) ;position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置for i = 1 : number newpath( i , : ) = oldpath ;% 交 换 路 径 中 选 中 的 城 市 newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ; newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ;end

2.pathfare.m

function [ objval ] = pathfare( fare , path )% 计 算 路 径 path 的 代 价 objval% path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ;% fare 为 代 价 矩 阵 , 且 为 方 阵 。[ m , n ] = size( path ) ;objval = zeros( 1 , m ) ;for i = 1 : m for j = 2 : n  objval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ; end objval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ;end

3、distance.m

function [ fare ] = distance( coord )% 根 据 各 城 市 的 距 离 坐 标 求 相 互 之 间 的 距 离% fare 为 各 城 市 的 距 离 , coord 为 各 城 市 的 坐 标[ ~ , m ] = size( coord ) ; % m 为 城 市 的 个 数fare = zeros( m ) ;for i = 1 : m % 外 层 为 行 for j = i : m % 内 层 为 列 fare( i , j ) = ... ( sum( ( coord( : , i ) - coord( : , j ) ) .^ 2 ) ) ^ 0.5 ; fare( j , i ) = fare( i , j ) ; % 距 离 矩 阵 对 称 endend

4、myplot.m

function [ ] = myplot( path , coord , pathfar )% 做 出 路 径 的 图 形% path 为 要 做 图 的 路 径 ,coord 为 各 个 城 市 的 坐 标% pathfar 为 路 径 path 对 应 的 费 用len = length( path ) ;clf ;hold on ;title( [ '近似最短路径如下,费用为' , num2str( pathfar ) ] ) ;plot( coord( 1 , : ) , coord( 2 , : ) , 'ok');pause( 0.4 ) ;for ii = 2 : len plot( coord( 1 , path( [ ii - 1 , ii ] ) ) , coord( 2 , path( [ ii - 1 , ii ] ) ) , '-b'); x = sum( coord( 1 , path( [ ii - 1 , ii ] ) ) ) / 2 ; y = sum( coord( 2 , path( [ ii - 1 , ii ] ) ) ) / 2 ; text( x , y , [ '(' , num2str( ii - 1 ) , ')' ] ) ; pause( 0.4 ) ;endplot( coord( 1 , path( [ 1 , len ] ) ) , coord( 2 , path( [ 1 , len ] ) ) , '-b' ) ;x = sum( coord( 1 , path( [ 1 , len ] ) ) ) / 2 ;y = sum( coord( 2 , path( [ 1 , len ] ) ) ) / 2 ;text( x , y , [ '(' , num2str( len ) , ')' ] ) ;pause( 0.4 ) ;hold off ;

5、mySAA.m

% 模 拟 退 火 算 法 ( Simulated Annealing Algorithm ) MATLAB 程 序clear ;% 程 序 参 数 设 定Coord = ... % 城 市 的 坐 标 Coordinates [ 0.6683 0.6195 0.4 0.2439 0.1707 0.2293 0.5171 0.8732 0.6878 0.8488 ; ... 0.2536 0.2634 0.4439 0.1463 0.2293 0.761 0.9414 0.6536 0.5219 0.3609 ] ;t0 = 1 ; % 初 温 t0iLk = 20 ; % 内 循 环 最 大 迭 代 次 数 iLkoLk = 50 ; % 外 循 环 最 大 迭 代 次 数 oLklam = 0.95 ; % λ lambdaistd = 0.001 ; % 若 内 循 环 函 数 值 方 差 小 于 istd 则 停 止ostd = 0.001 ; % 若 外 循 环 函 数 值 方 差 小 于 ostd 则 停 止ilen = 5 ; % 内 循 环 保 存 的 目 标 函 数 值 个 数olen = 5 ; % 外 循 环 保 存 的 目 标 函 数 值 个 数% 程 序 主 体m = length( Coord ) ; % 城 市 的 个 数 m fare = distance( Coord ) ; % 路 径 费 用 farepath = 1 : m ; % 初 始 路 径 pathpathfar = pathfare( fare , path ) ; % 路 径 费 用 path fareores = zeros( 1 , olen ) ; % 外 循 环 保 存 的 目 标 函 数 值e0 = pathfar ; % 能 量 初 值 e0t = t0 ; % 温 度 tfor out = 1 : oLk % 外 循 环 模 拟 退 火 过 程 ires = zeros( 1 , ilen ) ; % 内 循 环 保 存 的 目 标 函 数 值 for in = 1 : iLk % 内 循 环 模 拟 热 平 衡 过 程 [ newpath , ~ ] = swap( path , 1 ) ; % 产 生 新 状 态 e1 = pathfare( fare , newpath ) ; % 新 状 态 能 量 % Metropolis 抽 样 稳 定 准 则 r = min( 1 , exp( - ( e1 - e0 ) / t ) ) ; if rand < r path = newpath ; % 更 新 最 佳 状 态 e0 = e1 ; end ires = [ ires( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量 % 内 循 环 终 止 准 则 :连 续 ilen 个 状 态 能 量 波 动 小 于 istd if std( ires , 1 ) < istd break ; end end ores = [ ores( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量% 外 循 环 终 止 准 则 :连 续 olen 个 状 态 能 量 波 动 小 于 ostd if std( ores , 1 ) < ostd break ; end t = lam * t ; endpathfar = e0 ;% 输 入 结 果fprintf( '近似最优路径为:\n ' )%disp( char( [ path , path(1) ] + 64 ) ) ;disp(path)fprintf( '近似最优路径费用\tpathfare=' ) ;disp( pathfar ) ;myplot( path , Coord , pathfar ) ;

我试着运行了几次(只是改变了一下初温,也可以更改一下其他参数),发现初始温度 t0=1 时程序的最后结果与最优解差距小的概率比较大。 希望对大家有用!!​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2109073.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue transition组件

可能不生效的几个注意点 选择器的优先级谨慎合并样式 显示三阶段和隐藏三阶段的class名 1、vue2中显示的初始阶段类名是&#xff1a;v-enter&#xff1b;隐藏的初始阶段类名是&#xff1a;v-leave2、v-enter-active、v-leave-active这两个 class 可以被用来定义动画的持续时间…

C# 删除Word文档中的段落

在编辑Word文档时&#xff0c;我们有时需要调整段落的布局、删除不必要的段落以优化文档的结构和阅读体验。本文将通过以下3个简单示例演示如何使用免费.NET库删除Word文档中的段落 。 目录 C# 删除Word中的指定段落 C# 删除Word中的所有段落 C# 删除Word中的空白段落 免费…

【运维监控】influxdb 2.0+telegraf 监控tomcat 8.5运行情况(2)

关于java应用的监控本系列有文章如下&#xff1a; 【运维监控】influxdb 2.0telegraf 监控tomcat 8.5运行情况 【运维监控】influxdb 2.0grafana 监控java 虚拟机以及方法耗时情况 【运维监控】Prometheusgrafana监控tomcat运行情况 【运维监控】Prometheusgrafana监控spring b…

vllm源码解析(三):块管理(BlockManager)

六 块管理器 6.1 块管理方法在调度系统中的应用 在第二篇文章对调度系统的分析中&#xff0c;我们可以看到调度系统中普遍都使用了块管理方法&#xff1a; _schedule_prefills ... # 比较当前seq需要的物理块,gpu可用物理块之间的数量关系. 决定是否能给当前seq_group分配物…

828华为云征文|部署内容管理系统 Joomla

828华为云征文&#xff5c;部署内容管理系统 Joomla 一、Flexus云服务器X实例介绍1.1 云服务器介绍1.2 应用场景1.3 核心竞争力 二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 Joomla3.1 Joomla 介绍3.2 Docker 环境搭建3.3 Joomla 部署3.4 J…

阿里中间件——diamond

一、前言 最近工作不忙闲来无事&#xff0c;仔细分析了公司整个项目架构&#xff0c;发现用到了很多阿里巴巴集团开源的框架&#xff0c;今天要介绍的是中间件diamond. 二、diamond学习笔记 1、diamond简介 diamond是一个管理持久配置&#xff08;持久配置是指配置数据会持久化…

倒计时7天!CCS2024大模型安全与产业应用创新研讨活动诚邀你来

当下&#xff0c;“人工智能”已成为催生新质生产力的重要引擎&#xff0c;大模型在加速产业升级和经济增长的同时&#xff0c;也为网络安全带来了全新的机遇与挑战。「大模型安全与产业应用创新研讨活动」由百度安全、成都无糖信息联合承办&#xff0c;特邀云安全联盟CSA大中华…

Windows用户取消共享文件夹密码方法(Method for Windows Users to Cancel Shared Folder Password)

Windows用户取消访问共享文件夹密码方法 &#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您…

IP学习——oneday

1.什么是网络&#xff1f;为什么需要网络&#xff1f; 空间&#xff0c;时间&#xff1b;传统的邮件传输要考虑到距离&#xff0c;网络解决了空间距离&#xff08;太远&#xff09;、解决了时间问题&#xff08;旧音乐等&#xff09; 云:面向客户的虚拟化服务 运营商公司主营…

【运维监控】influxdb 2.0+telegraf 监控tomcat 8.5运行情况(1)

关于java应用的监控本系列有文章如下&#xff1a; 【运维监控】influxdb 2.0telegraf 监控tomcat 8.5运行情况 【运维监控】influxdb 2.0grafana 监控java 虚拟机以及方法耗时情况 【运维监控】Prometheusgrafana监控tomcat运行情况 【运维监控】Prometheusgrafana监控spring b…

02 Flask-快速上手

创建项目文件 从电脑选择一个盘符(来存放之后学习的项目文件) 这里选择以电脑C盘的桌面来做演示 在选择的盘符里面创建一个文件夹(来保存之后的学习文件) 使用 poetry 创建一个初始配置项(pyproject.toml) 详情参考 poetry init创建虚拟环境 poetry env use python激活虚拟…

面向可信和节能的雾计算医疗决策支持系统的优化微型机器学习与可解释人工智能

这篇论文的标题为《Optimized Tiny Machine Learning and Explainable AI for Trustable and Energy-Efficient Fog-Enabled Healthcare Decision Support System》&#xff0c;发表在《International Journal of Computational Intelligence Systems》2024年第17卷&#xff0c…

Gemini的AI生图消失数月终重返!Imagen 3或成谷歌“大招”,为避免Deepfake绞尽脑汁,网友:最逼真的AI人像!

谷歌Gemini的AI生图功能在漫长的沉寂后官宣重返!并推出了重大升级后的模型Imagen 3! 此前,Gemini的这项功能因为过分注重“政治正确”而被群嘲。例如生成了黑人形象的华盛顿等等,在引起广泛争议之后,这项功能随之被禁用。 现在,谷歌对其进行了升级,并准备在“未来几天…

[数据集][目标检测]电动车头盔佩戴检测数据集VOC+YOLO格式4235张5类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;4235 标注数量(xml文件个数)&#xff1a;4235 标注数量(txt文件个数)&#xff1a;4235 标注…

Github 2024-09-02 开源项目周报 Top13

根据Github Trendings的统计,本周(2024-09-02统计)共有13个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目3TypeScript项目3Vue项目2Rust项目2Go项目2Dart项目1Jupyter Notebook项目1Shell项目1Dockerfile项目1PHP项目1Blade项目1AI.AppFlow…

聚铭网络受邀成为ISC终端安全生态联盟首批成员单位

近日&#xff0c;在2024数博会这一行业盛会上&#xff0c;全国首个专注于终端能力的联盟——ISC终端安全生态联盟正式成立&#xff0c;聚铭网络受邀成为该联盟的首批成员单位之一。 ISC终端安全生态联盟由360集团发起&#xff0c;并联合20余家业内领先企业共同创立。联盟旨在通…

fortran安装

编写时间&#xff1a; 2024年9月5日10:36:40 Fortran环境配置&#xff1a; Visual Studio 2022 Intel oneAPI Base Toolkit Intel HPC Toolkit 演示环境&#xff1a; Windows 10 x64 VMware虚拟机 准备工作 下载Visual Studio 2022 下载链接&#xff1a; https://visual…

JAVA—单元测试

单元测试&#xff1a;就是针对最小的功能单元&#xff08;方法&#xff09;&#xff0c;编写测试代码对其进行正确性测试 之前是使用main函数调用来进行检测&#xff0c;无法实现自动化测试 也会影响其他方法的测试 目录 1.junit框架概述 2.junit框架的常见注解 1.junit框架…

【软件测试专栏】自动化测试函数篇

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;软件测试专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 自动化测试函数篇 关键词&#xff1a;函数、浏览器参数、常用函数…

JVM系列(十) -垃圾收集器介绍

一、摘要 在之前的几篇文章中,我们介绍了 JVM 内部布局、对象的创建过程、运行期的相关优化手段以及垃圾对象的回收算法等相关知识。 今天通过这篇文章,结合之前的知识,我们一起来了解一下 JVM 中的垃圾收集器。 二、垃圾收集器 如果说收集算法是内存回收的方法论,那么…