基于人工智能的交通标志识别系统

news2024/11/13 9:28:19

 

目录

  1. 引言
  2. 项目背景
  3. 环境准备
    • 硬件要求
    • 软件安装与配置
  4. 系统设计
    • 系统架构
    • 关键技术
  5. 代码示例
    • 数据预处理
    • 模型训练
    • 模型预测
  6. 应用场景
  7. 结论

1. 引言

交通标志识别系统是自动驾驶和智能交通的重要组成部分,能够帮助车辆自动识别路边的交通标志并作出相应的决策。通过使用深度学习模型,我们可以训练一个识别系统,对常见的交通标志进行准确分类。本文将介绍如何构建一个基于人工智能的交通标志识别系统,包括环境准备、系统设计及代码实现。

2. 项目背景

随着自动驾驶技术的快速发展,交通标志识别作为一种关键技术,能够确保车辆在行驶过程中遵守交通规则,提高驾驶的安全性。通过卷积神经网络(CNN)等深度学习算法,交通标志识别系统可以从车载摄像头获取的实时图像中提取信息,识别出交通标志,并根据标志做出相应的驾驶决策。

3. 环境准备

硬件要求

  • CPU:四核及以上
  • 内存:16GB及以上
  • 硬盘:至少100GB可用空间
  • GPU(推荐):NVIDIA GPU,支持CUDA,用于加速深度学习模型的训练

软件安装与配置

关键技术

5. 代码示例

数据预处理

  1. 操作系统:Ubuntu 20.04 LTS 或 Windows 10

  2. Python:建议使用 Python 3.8 或以上版本

  3. Python虚拟环境

    python3 -m venv traffic_sign_recognition_env
    source traffic_sign_recognition_env/bin/activate  # Linux
    .\traffic_sign_recognition_env\Scripts\activate  # Windows
    

    依赖安装

    pip install numpy pandas tensorflow keras matplotlib opencv-python scikit-learn
    

    4. 系统设计

    系统架构

    系统主要包括以下模块:

  4. 数据预处理模块:对交通标志图片进行缩放、归一化处理,并将数据集进行分割。
  5. 模型训练模块:基于卷积神经网络(CNN)的图像分类模型,负责提取交通标志的特征并进行分类。
  6. 模型预测模块:对实时输入的交通标志图片进行分类预测,输出相应的标志类别。
  7. 卷积神经网络(CNN):用于交通标志图像的特征提取和分类,适用于处理二维图像数据。
  8. 数据增强:通过图像翻转、缩放、旋转等方式,扩充数据集,提升模型的泛化能力。
  9. 迁移学习:使用预训练模型(如ResNet、VGG16)进行微调,提升分类性能,减少训练时间。
import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
import os
import cv2

# 加载交通标志数据集
def load_data(data_dir):
    images = []
    labels = []
    classes = os.listdir(data_dir)
    
    for idx, category in enumerate(classes):
        category_dir = os.path.join(data_dir, category)
        for file in os.listdir(category_dir):
            img_path = os.path.join(category_dir, file)
            img = cv2.imread(img_path)
            img = cv2.resize(img, (32, 32))  # 调整图像大小
            images.append(img)
            labels.append(idx)
    
    images = np.array(images)
    labels = np.array(labels)
    return images, labels

data_dir = 'traffic_signs_dataset'
images, labels = load_data(data_dir)

# 数据归一化
images = images / 255.0

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2)

# 数据增强
datagen = ImageDataGenerator(
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True
)
datagen.fit(X_train)

模型训练

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

# 构建卷积神经网络模型
model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
    MaxPooling2D(pool_size=(2, 2)),
    Conv2D(64, (3, 3), activation='relu'),
    MaxPooling2D(pool_size=(2, 2)),
    Conv2D(128, (3, 3), activation='relu'),
    MaxPooling2D(pool_size=(2, 2)),
    Flatten(),
    Dense(512, activation='relu'),
    Dropout(0.5),
    Dense(len(os.listdir(data_dir)), activation='softmax')  # 假设有N类交通标志
])

# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))

模型预测

from tensorflow.keras.preprocessing import image
import numpy as np

# 加载模型(假设已经保存了训练好的模型)
# model = load_model('traffic_sign_model.h5')

# 对单张图片进行预测
def predict_traffic_sign(img_path):
    img = image.load_img(img_path, target_size=(32, 32))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0) / 255.0

    prediction = model.predict(img_array)
    classes = os.listdir(data_dir)
    predicted_class = classes[np.argmax(prediction)]

    print(f'Predicted class: {predicted_class}')

# 测试交通标志识别
predict_traffic_sign('test_images/stop_sign.jpg')

⬇帮大家整理了人工智能的资料

包括人工智能的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多人工智能详细资料

问题讨论,人工智能的资料领取可以私信!

 

6. 应用场景

  • 自动驾驶:交通标志识别系统可以帮助自动驾驶车辆在行驶过程中识别路标,并根据标志信息作出相应的驾驶决策。
  • 智能交通监控:该系统可以安装在智能交通监控设备上,实时监控道路情况,提升交通管理的智能化水平。
  • 驾驶辅助系统:为驾驶员提供实时的交通标志提示,提高驾驶安全性。

7. 结论

通过使用卷积神经网络(CNN),可以有效地构建交通标志识别系统。该系统能够准确地识别常见的交通标志,并为自动驾驶、智能交通监控等领域提供技术支持。随着深度学习技术的不断进步,交通标志识别的准确性和实时性将进一步提升,为智能交通和自动驾驶的发展打下坚实基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2108707.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言-数据结构 无向图普里姆Prim算法(邻接矩阵存储)

Prim算法使用了贪心的思想,在算法中使用了两个数组,这两个数组会非常巧妙的操作整个算法的灵魂过程 lowcost的功能: 1.帮助算法寻找到当前距离已完成的最小生成树集合的最小的边长(找到新边) 2.在整个过程中记录新结…

分拣机介绍及解决方案细节

导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。 新书《智能物流系统构成与技术实践》人俱乐部 完整版文件和更多学习资料,请球友到知识星球【智能仓储物流技术研习社】自行下载。 这份文件是关于交叉带式分拣机的介绍及解…

openSSL 如何降版本

文章目录 前言openSSL 如何降版本1. 卸载2. 安装新的openssl版本3. 验证 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不会太差,实在白嫖的话&…

RT-Thread 使用HTTP固件下载方式进行OTA远程升级

参考资料:RT-T官网资料如下链接所示 STM32通用Bootloader (rt-thread.org) 1.app程序env配置过程 参考上述资料中"制作 app 固件"章节,分区大小根据自己设备而定,以下是我以407VET6为例设置的fal分区 notes:上述分区是由片内flash(on-chip)…

机械革命imini Pro820迷你主机评测和拆解,8845H小主机使用政府补贴仅需两千三

机械革命imini Pro820迷你主机评测和拆解,8845H小主机使用政府补贴仅需两千三。 最近上线了家电补贴相关的活动,最高可以补贴20%,然后就看到了这款mini主机感觉很划算就下单了,用来替换我旧的N5095小主机,当服务器用。…

电子技术基础

目录 二极管 二极管的概念二极管的整流 二极管的防反接 二极管的钳位稳压二极管 三极管 NPN型三极管PNP型三极管三极管的三种状态三极管三个极之间电流的关系 放大电路 三极管共射极放大电路分压式偏置电路静态工作点多级放大功率放大电路 运算放大器 同相比例放大器反相…

旅行商问题 | Matlab基于混合粒子群算法GA-PSO的旅行商问题TSP

目录 效果一览基本介绍建模步骤程序设计参考资料 效果一览 基本介绍 混合粒子群算法GA-PSO是一种结合了遗传算法(Genetic Algorithm, GA)和粒子群优化算法(Particle Swarm Optimization, PSO)的优化算法。在解决旅行商问题&#…

「Python数据分析」Pandas进阶,使用groupby分组聚合数据(三)

​在实际数据分析和处理过程中,我们可能需要灵活对分组数据进行聚合操作。这个时候,我们就需要用到用户自定义函数(User-Defined Functions,UDFs)。 使用用户自定义函数进行聚合 使用用户自定义函数聚合时的性能&…

联想泄露显示本月推出更便宜的Copilot Plus电脑

联想似乎准备推出新的更实惠的 Copilot Plus 电脑。可靠的爆料者Evan Blass发布了一份来自联想的新闻稿,详细介绍了将在本周晚些时候的IFA展会上宣布的各种Copilot Plus电脑,其中包括两款采用尚未公布的8核高通骁龙X Plus芯片的电脑。 这些新的高通芯片…

Qt 创建一个json数组对象写入文档并从文档读出q

void createJsonArray() { // 创建一个JSON数组 QJsonArray jsonArray; // 创建一些JSON对象并添加到数组中 for (int i 0; i < 3; i) { QJsonObject jsonObject; jsonObject["key" QString::number(i)] "value" QStri…

原点安全荣获“AutoSec Awards 安全之星”优秀汽车数据安全合规方案奖

9月3日&#xff0c;「AutoSec 2024第八届中国汽车网络安全周暨第五届智能汽车数据安全展」在上海盛大开幕。本届大会由谈思实验室和谈思汽车主办、上海市车联网协会联合主办&#xff0c;以汽车“网络数据安全、软件安全、功能安全”为主题&#xff0c;汇聚了国内外的技术专家、…

Meta关闭Spark AR平台:未来规划与影响分析

Meta宣布将关闭其移动AR创作平台Spark AR&#xff0c;这一消息在业界引起了广泛关注。尽管Snap和TikTok在AR滤镜领域取得了巨大成功&#xff0c;但Meta却选择了另一条发展道路。本文将探讨这一决策背后的可能原因及其对未来的影响。 关闭Spark AR平台的背后 硬件为主&#xff…

PyTorch 创建数据集

图片数据和标签数据准备 1.本文所用图片数据在同级文件夹中 ,文件路径为train/’ 2.标签数据在同级文件&#xff0c;文件路径为train.csv 3。将标签数据提取 train_csvpd.read_csv(train.csv)创建继承类 第一步&#xff0c;首先创建数据类对象 此时可以想象为单个数据单元的…

【PyTorch】基础环境如何打开

前期安装可以基于这个视频&#xff0c;本文是为了给自己存档如何打开pycharm和jupyter notebookPyTorch深度学习快速入门教程&#xff08;绝对通俗易懂&#xff01;&#xff09;【小土堆】_哔哩哔哩_bilibili Pycharm 配置 新建项目的时候选择解释器pytorch-gpu即可。 Jupyte…

【C++ 第二十二章】C++的类型转换

1.C语言中的类型转换 在C语言中&#xff0c;如果赋值运算符左右两侧类型不同&#xff0c;或者形参与实参类型不匹配&#xff0c;或者返回值类型与接收返回值类型不一致时&#xff0c;就需要发生类型转化&#xff0c;C语言中总共有两种形式的类型转换&#xff1a;隐式类型转换和…

CDA数据分析一级考试备考攻略

一、了解考试内容和结构 CDA一级考试主要涉及的内容包括&#xff1a;数据分析概述与职业操守、数据结构、数据库基础与数据模型、数据可视化分析与报表制作、Power BI应用、业务数据分析与报告编写等。 CDA Level Ⅰ 认证考试大纲:https://www.cdaglobal.com/certification.h…

一文还原时序数据库 IoTDB 在 TPCx-IoT 的测试全流程!

在云服务硬件环境下&#xff0c;IoTDB 写入、查询、利用资源能力均表现出色&#xff01; 之前&#xff0c;我们为大家介绍了基于 IoTDB 的企业级产品 TimechoDB&#xff0c;在 TPCx-IoT 基准测试中打破世界纪录&#xff0c;取得的双指标第一成绩&#xff0c;和选择 TPCx-IoT 的…

【Python机器学习】核心数、进程、线程、超线程、L1、L2、L3级缓存

如何知道自己电脑的CPU是几核的,打开任务管理器(同时按下:Esc键、SHIFT键、CTRL键) 然后,点击任务管理器左上角的性能选项,观察右下角中的内核:后面的数字,就是你CPU的核心数,下图中我的是16个核心的。 需要注意的是,下面的逻辑处理器:32 表示支持 32 线程(即超线…

【爬虫软件】批量采集短视频博主的主页作品

用python开发的DY爬虫采集软件&#xff0c;可自动按博主抓取其已发布视频数据。 软件界面&#xff1a; 采集结果: 日志记录&#xff1a; 软件说明&#xff1a; 演示视频&#xff1a; https://www.bilibili.com/video/BV1Kb42187qf 讲解文章&#xff1a; https://www.bi…

2024数学建模国赛选题建议+团队助攻资料

目录 一、题目特点和选题建议 二、模型选择 1、评价模型 2、预测模型 3、分类模型 4、优化模型 5、统计分析模型 三、white学长团队助攻资料 1、助攻代码 2、成品论文PDF版 3、成品论文word版 9月5日晚18&#xff1a;00就要公布题目了&#xff0c;根据历年竞赛题目…