机器学习:opencv图像识别--模版匹配

news2025/1/10 1:42:53

目录

一、模版匹配的核心概念

1.图片模板匹配是一种用于在图像中查找特定模式或对象的技术。

2.模板图像

3.目标图像

4.滑动窗口

5.相似度度量

6.匹配位置

二、模版匹配的步骤

1.准备图像:

2.预处理:

3.匹配:

4.定位最佳匹配:

5.标记结果:

6.显示或处理结果:

三、代码实现


一、模版匹配的核心概念

1.图片模板匹配是一种用于在图像中查找特定模式或对象的技术。

2.模板图像

  • 这是你要在目标图像中找到的部分。模板图像通常比目标图像小,并且包含你感兴趣的特征。        

 

3.目标图像

  • 这是包含模板图像的图像。在目标图像中,你希望找到与模板图像匹配的区域。

 

4.滑动窗口

  • 模板图像像一个窗口一样在目标图像上滑动。这种滑动可以是从左到右,从上到下,或以其他方式覆盖整个目标图像。

 

5.相似度度量

在每个窗口位置,计算模板图像与目标图像窗口区域的相似度。常见的相似度度量包括:

  • 归一化互相关(NCC):衡量两个图像块之间的相似度,通过比较像素值的相关性。
  • 均方误差(MSE):计算模板图像与目标图像窗口区域之间的像素差异的平方和。
  • 结构相似性(SSIM):评估图像的亮度、对比度和结构相似度。

 

6.匹配位置

  • 通过比较相似度度量的结果,确定模板图像在目标图像中最佳的匹配位置。通常,最大或最小的相似度值指示了最佳匹配。

 

二、模版匹配的步骤

1.准备图像

  • 目标图像:这是你希望在其中查找模板图像的图像。
  • 模板图像:这是你要在目标图像中查找的图像片段或图案。

 

2.预处理

  • 灰度化(可选):将目标图像和模板图像转换为灰度图像,以简化计算和提高效率(对于一些匹配方法,灰度化是可选的)。

 

3.匹配

  • 使用匹配算法计算模板图像与目标图像不同位置之间的相似度。这些算法会生成一个相似度矩阵,矩阵中的每个值表示模板图像在目标图像某个位置的匹配度。

 

4.定位最佳匹配

  • 从相似度矩阵中找出最佳匹配的位置。通常,这会是矩阵中的最大值(表示最相似的区域)。

 

5.标记结果

  • 在目标图像上标记出匹配区域,通常是通过绘制一个矩形框来突出显示找到的模板图像的位置。

 

6.显示或处理结果

  • 显示带有匹配标记的目标图像,或将结果保存以供后续处理。

三、代码实现

  • 完整代码 以及函数参数介绍
  • 使用的是cv2.matchTemplate()方法
"""模版匹配"""

# cv2.matchTemplate(image, templ, method, result=None, mask=None)
# image:待搜索图像
# templ:模板图像
# method:计算匹配程度的方法,可以有:
#       TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;匹配越好,值越小;匹配越差,值越大。
#       TM_CCORR 相关匹配法:该方法采用乘法作;数值越大表明匹配程度越好。
#       TM_CCOEFF 相关系数匹配法:数值越大表明匹配程度越好。
#       TM_SQDIFF_NORMED 归一化平方差匹配法,匹配越好,值越小;匹配越差,值越大。
#       TM_CCORR_NORMED 归一化相关匹配法,数值越大表明匹配程度越好。
#       TM_CCOEFF_NORMED 归一化相关系数匹配法,数值越大表明匹配程度越好。

import cv2

kele = cv2.imread('baishi.jpg')
moban = cv2.imread('baishikele.png')
cv2.imshow('baishi', kele)
cv2.imshow('moban', moban)
cv2.waitKey(0)

h, w = moban.shape[:2]  # 获取模版图片的高宽
res = cv2.matchTemplate(kele, moban, cv2.TM_CCOEFF_NORMED)   # 返回一个矩阵,其中每个元素表示该位置与模板的匹配程度
# cv2.minMaxLoc可以获取矩阵中的最小值和最大值,以及最小值的索引号和最大值的索引号
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 最小值、最大值、最小值位置、最大值位置
top_left = max_loc  # 最大值为匹配到的模板的左上角
bottom_right = (top_left[0] + w, top_left[1] + h)  # 主图片中用模版匹配到的位置
kele_template = cv2.rectangle(kele, top_left, bottom_right, (0, 0, 255), thickness=3)

cv2.imshow('kele_template', kele_template)
cv2.waitKey(0)

输出:

也可以自己找图片进行截图尝试模版匹配

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2108130.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MySQL】初识MySQL—MySQL是啥,以及如何简单操作???

前言: 🌟🌟本期讲解关于MySQL的简单使用和注意事项,希望能帮到屏幕前的你。 🌈上期博客在这里:http://t.csdnimg.cn/wwaqe 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 目…

2024数学建模国赛题目A-E题

2024数学建模国赛题目A-E题已经发布 各个赛题题目如下 A题 板凳龙 闹元宵 B题 生产过程中的决策问题 C题 农作物的种植策略 D题 反潜航空深弹命中概率问题 E题 交通流量管控 Csdn在文末,关注云顶数模公众号,或者点击下方名片。

2024年高教社杯数学建模国赛赛题浅析——助攻快速选题

一图流——一张图读懂国赛 总体概述: A题偏几何与运动学模型,适合有几何与物理背景的队伍,数据处理复杂性中等。 B题侧重统计和优化,适合有运筹学和经济学背景的队伍,数据处理较为直接但涉及多步骤的决策优化。 C题…

新手c语言讲解及题目分享(十六)--文件系统专项练习

在我刚开始学习c语言的时候就跳过了这一章节,但在后面慢慢发现这一章节还是比较重要的,如果你报考了计算机二级c语言的话,你应该可以看到后面的三个大题有时会涉及到这章。所以说这章还是非常重要的。 目录 前言 一.打开文件 1.Fopen( )函数返回值 2&…

Keil发现Error: C9555E: Failed to check out a license

遇到这样的问题 解决办法: 换成这个版本 然后重新用keygen生成license

如何理解进程和线程之间的关系

目录 前言 一、进程和线程的关系 1、引入线程的原因 2、线程的特点 3、线程和进程的关系 二、如何在进程中创建线程 1、创建线程的函数 2、举例使用: 三、线程间的同步互斥机制 1、什么是同步互斥机制 2、如何在线程中使用同步互斥机制 3、实际举例 总结 前言 …

为什么要有RPC

​ 1. RPC(Remote Procedure Call) 定义: RPC(Remote Procedure Call,远程过程调用)是一种允许程序在不同的地址空间(通常是在网络上的不同机器)之间调用函数或方法的机制。它使得…

代码随想录算法训练营Day03 | 链表理论基础、203.移除链表元素 、707.设计链表、206.反转链表

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 链表理论基础203.移除链表元素思路与重点 707.设计链表思路与重点 206.反转链表思路与重点 链表理论基础 C/C的定义链表节点方式: // 单链表 struct L…

vue part 8

浏览器本地存储 application&#xff0c; local storage中 js方法肯定会用很多呀&#xff0c;只是不直接操作dom了但是对对象和数组进行操作还是原先的方法&#xff0c;jq的话想用引入就可以了。我是直接放弃jq了&#xff0c;在框架中用jq包不好 sessionStorage.HTML <!…

Git+word记笔记

程序员记笔记主要同步很重要&#xff0c;我这个方法只支持个人笔记&#xff0c;如果团队还是用企业微信开个企业会员比较方便。为什么用word&#xff0c;因为可以镶嵌代码和文档&#xff0c;不仅仅是文字&#xff0c;兼容性强 语雀&#xff0c;云笔记这些对于上传的word都是有…

AI大模型编写多线程并发框架(六十五):发布和应用

系列文章目录 文章目录 系列文章目录前言一、项目背景二、第十三轮对话-优化传参三、第十四轮对话-释放资源四、完善所有单元测试五、验证通过六、发布七、参考文章 前言 在这个充满技术创新的时代&#xff0c;AI大模型正成为开发者们的新宠。它们可以帮助我们完成从简单的问答…

IA——网络操作设备VRP简介

一&#xff0c;VRP简介 二&#xff0c;网络设备的管理 &#xff08;1&#xff09;console口&#xff1a; &#xff08;2&#xff09;talnet: &#xff08;3&#xff09;SSH: 安全的远程登陆 &#xff08;4&#xff09;通过WEB页面登录&#xff1a; 三&#xff0c;命令行常见…

TikTok养号一般养几天?账号起步方法

TikTok养号是一个关键的步骤&#xff0c;它可以帮助新账号快速积累粉丝和观众&#xff0c;增加视频的曝光和互动率&#xff0c;从而提升账号的影响力和可见性。但是养号也并不是简单的登录账号、互动点赞&#xff0c;而是从底层设备到分发频率都需要讲究方法&#xff0c;否则号…

linux下c语言中的单向列表,双向链表,内核双向列表,及适用场景

1. 单向链表&#xff08;Singly Linked List&#xff09; 1.1 定义与结构 单向链表是链式存储结构中最简单的一种。它的每个节点包含两个部分&#xff1a; - 数据域&#xff1a;存储数据元素 - 指针域&#xff1a;存储指向下一个节点的指针 在单向链表中&#xff0c;节点通过…

OpenHarmony实战开发:@Watch装饰器:状态变量更改通知

往期鸿蒙全套实战精彩文章必看内容&#xff1a; 鸿蒙开发核心知识点&#xff0c;看这篇文章就够了 最新版&#xff01;鸿蒙HarmonyOS Next应用开发实战学习路线 鸿蒙HarmonyOS NEXT开发技术最全学习路线指南 鸿蒙应用开发实战项目&#xff0c;看这一篇文章就够了&#xff08…

为什么要做智慧厕所,智慧公厕的建设意义有哪些?@卓振思众

智慧厕所是利用物联网、大数据、人工智能等技术&#xff0c;对传统厕所进行智能化升级改造后的新型厕所。它具备环境监测与调控、厕位引导、资源管理、安全管理、数据分析与管理平台等功能和特点。卓振思众是智慧厕所源头厂家&#xff0c;建设智慧厕所主要有以下几个重要原因&a…

【python因果推断库7】使用 pymc 模型的工具变量建模 (IV)2

目录 与普通最小二乘法 (OLS) 的比较 应用理论&#xff1a;政治制度与GDP 拟合模型&#xff1a;贝叶斯方法 多变量结果和相关性度量 结论 与普通最小二乘法 (OLS) 的比较 simple_ols_reg sk_lin_reg().fit(X.reshape(-1, 1), y)print("Intercept:", simple_ols_…

V90总线伺服报800F错误

1、博途PLC工艺对象位置轴轴控功能块 博途PLC工艺对象位置轴轴控功能块(完整SCL代码)-CSDN博客文章浏览阅读423次。S7-1200PLC脉冲轴位置轴位置控制功能块S7-1200PLC脉冲轴位置轴位置控制功能块优化(完整SCL源代码)_s71200 脉冲轴-CSDN博客文章浏览阅读341次。该博客详细介绍了…

自闭症儿童语言干预

自闭症儿童的语言发展往往面临独特挑战&#xff0c;这不仅影响了他们的日常交流能力&#xff0c;也制约了其社交与认知的全面发展。因此&#xff0c;实施科学有效的语言干预对于促进自闭症儿童的语言能力至关重要。 语言干预应基于个性化原则&#xff0c;充分考虑每个孩子的兴…

基于echarts车辆大数据综合分析平台

0.序言 基于ECharts的大数据综合分析平台技术框架与基本原理 技术框架 基于ECharts的大数据综合分析平台是一个集数据收集、处理、分析及可视化展示于一体的综合性系统。其技术框架主要可以分为以下几个层次&#xff1a; 数据源层&#xff1a; 数据收集&#xff1a;通过各种…