Synchronized、Reetrantlock

news2024/9/20 20:35:20

一、线程安全问题

多线程操作共享变量,由于该共享变量不是立刻可见的,读写不具备原子性,所以存在线程安全问题

二、售票案例

模拟售票案例,库存有10张票,有3个窗口(3个子线程)分别去卖,直到库存为0;

public class MyCount {
    public int ticket = 10;

    public void sell() {
        //调用多个线程去把ticket减到0
        for (int i = 0; i < 3; i++){
            new Thread(()->{
                while (true){
                    if (ticket>0){
                        //模拟售票耗费时间0.1秒
                        try {
                            Thread.sleep(100);
                        } catch (InterruptedException e) {
                            throw new RuntimeException(e);
                        }
                        ticket--;
                        System.out.println(Thread.currentThread().getName()+"把ticket减到了"+ticket);
                    }else {
                        break;
                    }
                }

            },"线程"+i).start();
        }
    }
    
    public static void main(String[] args) {
        MyCount myCount = new MyCount();
        myCount.sell();
    }
}

出现超卖和重卖的问题

在这里插入图片描述

三、Sychronized

3.1 修饰代码块

将同步代码块用sychronized(){ }标记。操作相同的共享变量的线程竞争的锁对象必须是同一个,放在小括号里。

    public void sell() {
        //调用多个线程去把ticket减到0
        for (int i = 0; i < 3; i++){
            new Thread(()->{
                while (true){
                    // 加synchronized
                    synchronized (MyCount.class){
                        if (ticket>0){
                            //模拟售票耗费时间0.1秒
                            try {
                                Thread.sleep(100);
                            } catch (InterruptedException e) {
                                throw new RuntimeException(e);
                            }
                            ticket--;
                            System.out.println(Thread.currentThread().getName()+"把ticket减到了"+ticket);
                        }else {
                            break;
                        }
                    }
                }

            },"线程"+i).start();
        }
    }

在这里插入图片描述

修改synchronized的锁对象,发现锁失效了。
原因是每个线程里都有各自的obj对象,不是同一个。

在这里插入图片描述

在这里插入图片描述

3.2 修饰方法

注意:这里多个Thread使用的是同一个实现了Runnable接口的类的对象

public class MyCount {
    public void sell() {
        //调用多个线程去把ticket减到0
        Window w = new Window();
        for (int i = 0; i < 3; i++){
            new Thread(w,"线程"+i).start();
        }
    }

    public static void main(String[] args) {
        MyCount myCount = new MyCount();
        myCount.sell();
    }
}

class Window implements Runnable{
    private int ticket = 10;

    @Override
    public void run() {
        while (true){
            this.sell();
        }
    }
    synchronized void sell(){
        if (ticket>0){
            //模拟售票耗费时间0.1秒
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            ticket--;
            System.out.println(Thread.currentThread().getName()+"把ticket减到了"+ticket);
        }
    }
}

在这里插入图片描述

3.3 synchronized总结

  • 任意对象都可以作为同步锁。
  • 同步方法的锁:静态方法(类名.class)、非静态方法(this)
  • 同步代码块:自己指定,很多时候也是指定为this或类名.class

四、Reentrantlock

4.2 使用流程

使用流程

  1. 实例化 ReentrantLock
  2. 调用锁定方法lock()
  3. 调用解锁方法unlock()

在这里插入图片描述
如果同步代码块会有异常,要把unlock()写到finally

import java.util.concurrent.locks.ReentrantLock;

public class MyCount {
    public int ticket = 10;
    private final ReentrantLock lock = new ReentrantLock();
    public void sell() {
        //调用多个线程去把ticket减到0
        for (int i = 0; i < 3; i++){
            new Thread(()->{
                while (true){
                    //获取锁
                    lock.lock();
                    //需要保证线程安全的代码
                    try{
                        if (ticket>0){
                            //模拟售票耗费时间0.1秒
                            try {
                                Thread.sleep(100);
                            } catch (InterruptedException e) {
                                throw new RuntimeException(e);
                            }
                            ticket--;
                            System.out.println(Thread.currentThread().getName()+"把ticket减到了"+ticket);
                        }else {
                            break;
                        }
                    }finally {
                        //释放锁
                        lock.unlock();
                    }
                }

            },"线程"+i).start();
        }
    }

    public static void main(String[] args) {
        MyCount myCount = new MyCount();
        myCount.sell();
    }
}

默认是非公平锁,也就是后来的线程也可能抢到锁。
在这里插入图片描述

4.2 公平锁

公平锁:线程会排队,排在前面的先获得锁。如果这个锁是公平锁,那么线程来的时候会检查队列里是否有别的线程在排队,如果有的话就进队列里让别的线程先运行。

private final ReentrantLock lock = new ReentrantLock(true);

在这里插入图片描述

4.3 尝试获取锁tryLock()

  • 不管锁有没有获取到,都会继续向下执行,而不会阻塞。
  • 有返回值,返回是否成功获取到了锁
    public void sell() {
        //调用多个线程去把ticket减到0
        for (int i = 0; i < 3; i++){
            new Thread(()->{
                while (true){
                    //获取锁
                    boolean tried = lock.tryLock();
                    System.out.println(Thread.currentThread().getName()+"尝试获取锁:"+tried);
                    //需要保证线程安全的代码
                    try{
                        if (ticket>0){
                            //模拟售票耗费时间0.1秒
                            try {
                                Thread.sleep(100);
                            } catch (InterruptedException e) {
                                throw new RuntimeException(e);
                            }
                            ticket--;
                            System.out.println(Thread.currentThread().getName()+"把ticket减到了"+ticket);
                        }else {
                            break;
                        }
                    }finally {
                        //释放锁
                        lock.unlock();
                    }
                }

            },"线程"+i).start();
        }
    }

这里抛出异常是因为,没有获取到锁但是却有调用了unlock()

在这里插入图片描述
所以需要在unlock之前判断一下是否获取到了锁

    public void sell() {
        //调用多个线程去把ticket减到0
        for (int i = 0; i < 3; i++){
            new Thread(()->{
                while (true){
                    //获取锁
                    boolean tried = lock.tryLock();
                    //需要保证线程安全的代码
                    try{
                        //如果获取成功
                        if (tried){
                            if (ticket>0){
                                //模拟售票耗费时间0.1秒
                                try {
                                    Thread.sleep(100);
                                } catch (InterruptedException e) {
                                    throw new RuntimeException(e);
                                }
                                ticket--;
                                System.out.println(Thread.currentThread().getName()+"把ticket减到了"+ticket);
                            }else {
                                break;
                            }
                        }
                    }finally {
                        //释放锁
                        if (tried){
                            lock.unlock();
                        }
                    }
                }

            },"线程"+i).start();
        }
    }

在这里插入图片描述

4.3 lockInterrruptibly()可中断地获取锁

正解:当t1执行时间很长,t2(获取锁时采用lockInterrruptibly()方式)一直在等待获取锁,一直获取不到,这时候t2可以被别的线程中断。
如果t2是lock方式获取锁,那他只能陷入无休止的等待获取锁的过程中,不能直接被中断

这是错误的:线程t1调用lockInterrruptibly()方法获取锁后,别的线程可以立刻打断t1的执行

    public void sell() throws InterruptedException {
        Thread t1 = new Thread(() -> {
            try {
                lock.lock();
                System.out.println("t1 start");
                Thread.sleep(Long.MAX_VALUE);
                System.out.println("t1 end");
            } catch (InterruptedException e) {
                System.out.println("t1 被中断");
            } finally {
                lock.unlock();
            }
        });
        t1.start();

        // 阻塞1秒,保证上面的线程先执行,先获取到锁
        Thread.sleep(1000);

        Thread t2 = new Thread(() -> {
            try {
                lock.lockInterruptibly();
                System.out.println("t2 start");
                Thread.sleep(Long.MAX_VALUE);
                System.out.println("t2 end");
            } catch (InterruptedException e) {
                System.out.println("t2 被中断");
            } finally {
                //lock.unlock();
            }
        });
        t2.start();

        Thread.sleep(3000);
        t2.interrupt();
    }

在这里插入图片描述
将lock.lockInterruptibly()改为lock.lock()后

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2107717.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

室内导航定位系统在医院的应用与部署

随着医疗技术的飞速发展&#xff0c;医院规模日益扩大&#xff0c;科室布局日趋复杂&#xff0c;患者及家属在寻找目标科室、病房或检查室时常常感到迷茫。为解决这一问题&#xff0c;室内导航定位系统应运而生&#xff0c;并逐渐成为现代医院智慧化建设的重要组成部分。接下来…

vue3 VueUse useElementVisibility 来监听某一个元素或者div是否在当前视口viewport中可见。

1、先上一个图&#xff1a; 2、安装vueuse/core pnpm add vueuse/core 3、新建一个组件&#xff1a; <script setup lang"ts"> import { ref, watch } from "vue"; import { useElementVisibility } from "vueuse/core";const target re…

AI短剧时代来临,用ai生成短剧的工具?AI文字生成短视频工具系统搭建开发,AI前景趋势怎么样?

前言&#xff1a; AI短剧是近期来随着人工智能技术的发展而兴起的一种新型影视内容形式。它利用AI技术&#xff0c;如AIGC&#xff08;生成式人工智能&#xff09;等&#xff0c;进行剧本创作、角色设计、场景构建、特效制作等&#xff0c;从而创作出全新的短剧作品。 一、AI…

Depop被封原因:IP禁令后如何重新创建账户?

Depop 是一个受欢迎的在线市场&#xff0c;帮助用户在全球范围内买卖服装、时尚物品和其他配饰。然而&#xff0c;与其他在线平台一样&#xff0c;Depop 有每个用户必须遵守的准则和规则&#xff0c;以确保市场安全公平。其中一条规则是&#xff0c;您不得拥有多个帐户&#xf…

免费分享:2020年全国道路网(分级)矢量数据

数据详情 全国道路网&#xff08;分级&#xff09;矢量数据 数据属性 数据名称&#xff1a;2020年全国道路网&#xff08;分级&#xff09;矢量数据 道路类型分类&#xff1a;高速、国道、省道、铁路、县道、乡道 道路级别&#xff1a;一级、二级、三级、四级 空间位置&am…

2024 年高教社杯全国大学生数学建模竞赛题目-B 题 生产过程中的决策问题

某企业生产某种畅销的电子产品&#xff0c;需要分别购买两种零配件&#xff08;零配件 1 和零配件 2&#xff09;&#xff0c; 在企业将两个零配件装配成成品。在装配的成品中&#xff0c;只要其中一个零配件不合格&#xff0c;则成品一 定不合格&#xff1b;如果两个零配件均合…

代码随想录 刷题记录-28 图论 (5)最短路径

一、dijkstra&#xff08;朴素版&#xff09;精讲 47. 参加科学大会 思路 本题就是求最短路&#xff0c;最短路是图论中的经典问题即&#xff1a;给出一个有向图&#xff0c;一个起点&#xff0c;一个终点&#xff0c;问起点到终点的最短路径。 接下来讲解最短路算法中的 d…

校园失物招领系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;发布人管理&#xff0c;物品类别管理&#xff0c;失物招领管理&#xff0c;寻物启事管理&#xff0c;认领认证管理&#xff0c;系统管理 微信端账号功能包括&#xff1a;系统首页…

基于yolov8的西红柿缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的西红柿缺陷检测系统是一个利用深度学习技术的创新项目&#xff0c;旨在通过自动化和智能化的方式提高西红柿缺陷检测的准确性和效率。该系统利用YOLOv8目标检测算法&#xff0c;该算法以其高效性和准确性在目标检测领域表现出色。YOLOv8不仅继承了YO…

OpenSCAD 基础教程

OpenSCAD 基础教程 文章目录 OpenSCAD 基础教程1. 引言2. 安装与设置3. OpenSCAD 基本概念与语法3.1 基础形状3.2 变换操作3.4 布尔运算3.4 控制流3.5 特殊功能 4. 实践案例&#xff1a;创建一个简单的机械部件5. 高级技巧6. 导出与3D打印7. 常见问题与解决方案8. 结语 1. 引言…

langchain 《斗破苍穹》智谱 RAG 问题搜索

目录 代码 项目介绍 模型对比实验 分块方法对比 检索方法对比 结果 10条问题 15条问题 局限性 代码 https://github.com/5zjk5/prompt-engineering/tree/master 项目介绍 《斗破苍穹》小说 RAG 问答&#xff0c;爬虫爬取整部小说章节&#xff0c;并分别保存到不同的…

传统CV算法——图像特征算法之斑点检测算法

文章目录 3. 斑点检测3.1 斑点的理解3.1.1 斑点定义3.1.2 斑点检测 3.2斑点检测基本原理3.3LoG计算流程及原理1. 高斯函数2. 拉普拉斯算子3. 组合高斯和平滑4. 计算 LoG4.1. 一阶导数4.2. 二阶导数4.3. 组合二阶导数 5. LoG 的特性6.多尺度检测 3.4 DOG3.4.1 DoG 的基本原理3.4…

低通滤波函数实现

在做的项目中需要通过PWM驱动IGBT来控制负载功率&#xff0c;如果PWM频率很高&#xff0c;电流采样基本不受影响。但是IGBT的开关频率高会引起更多的开关损耗&#xff0c;所以降低了PWM频率&#xff0c;但此时电流会是接近于PWM信号的波形&#xff0c;无法准确采集。所以硬件上…

读取、写入、生成txt文本文档详解——C#学习笔记

一、4中写入文本的方式&#xff1a; //①表示清空 txt StreamWriter mytxt1 new StreamWriter("D:\\1清空.txt"); string t1 ""; mytxt1.Write(t1); mytxt1.Close(); //②表示向txt写入文本 StreamWriter mytxt2 new StreamWriter("D:…

用HTML写一个动态的的电子相册实战详细案例

效果展示&#xff1a;&#x1f447; 详细代码&#xff1a; 1、新建一个.html文件 2、然后将下面的内容复制到 动态相册.html里面 <!DOCTYPE html> <html> <head><title>图片轮播效果</title><style>.container {position: relative;wi…

Pyspark下操作dataframe方法(1)

文章目录 Pyspark dataframe创建DataFrame使用Row对象使用元组与scheam使用字典与scheam注意 agg 聚合操作alias 设置别名字段设置别名设置dataframe别名 cache 缓存checkpoint RDD持久化到外部存储coalesce 设置dataframe分区数量collect 拉去数据columns 获取dataframe列 Pys…

【如何用远程连接到ubuntu服务器上的redis】

文章目录 ubuntu上安装redis常用命令 远程连接测试在另一台PC上进行远程访问 ubuntu上安装redis Redis 5.0 被包含在默认的 Ubuntu 20.04 软件源中。想要安装它&#xff0c;以 root 或者其他 sudo 身份运行下面的命令&#xff1a; sudo apt update //更新apt sudo apt inst…

全视通精彩亮相宁夏养老服务业博览会,助力西北地区养老产业高质量发展

据悉&#xff0c;今年4月&#xff0c;宁夏被列入48个全国基本养老服务综合平台试点地区&#xff0c;是全域申报成功的8个省&#xff08;直辖市&#xff09;之一&#xff0c;也是西北唯一的入选省份。5月&#xff0c;中卫市成功入选2024年居家和社区基本养老服务提升行动项目地区…

多智能体强化学习:citylearn城市建筑能量优化和需求响应

今天分享一个用于能量优化的强化学习框架&#xff0c;citylearn 代码量非常庞大&#xff0c;我都不敢看&#xff0c;看也看不完&#xff0c;不花一定的时间难以搞懂它的原理。 CityLearn&#xff08;CL&#xff09;环境是一个类似 OpenAI Gym 的环境&#xff0c;它通过控制不…

网络安全服务基础Windows--第10节-FTP主动与被动模式

概述 将某台计算机中的⽂件通过⽹络传送到可能相距很远的另⼀台计算机中&#xff0c;是⼀项基本的⽹络应⽤&#xff0c;即⽂件传送。 ⽂件传送协议FTP &#xff08;File Transfer Protocol&#xff09;是因特⽹上使⽤得最⼴泛的⽂件传送协议。 FTP是⼀个⽼早的⽹络协议&…